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Exploiting High Performance Spiking Neural
Networks With Efficient Spiking Patterns

Guobin Shen

Abstract—Spiking Neural Networks (SNNs) use discrete spike
sequences to transmit information, which significantly mimics the
information transmission of the brain. Although this binarized
form of representation dramatically enhances the energy efficiency
and robustness of SNNs, it also leaves a large gap between the
performance of SNNs and Artificial Neural Networks based on real
values. There are many different spike patterns in the brain, and
the dynamic synergy of these spike patterns greatly enriches the
representation capability. Inspired by spike patterns in biological
neurons, this paper introduces the dynamic Burst pattern and
designs the Leaky Integrate and Fire or Burst IF&B) neuron
that can make a trade-off between short-time performance and
dynamic temporal performance from the perspective of network
information capacity. IF&B neuron exhibits three modes, resting,
Regular spike, and Burst spike. The burst density of the neu-
ron can be adaptively adjusted, which significantly enriches the
characterization capability. We also propose a decoupling method
that can losslessly decouple IF&B neurons into equivalent LIF
neurons, which demonstrates that IF &B neurons can be efficiently
implemented on neuromorphic hardware. We conducted experi-
ments on the static datasets CIFAR10, CIFAR100, and ImageNet,
which showed that we greatly improved the performance of the
SNNs while significantly reducing the network latency. We also
conducted experiments on neuromorphic datasets DVS-CIFAR10
and NCALTECH101 and showed that we achieved state-of-the-art
with a small network structure.

Index Terms—Adaptive burst neuron, network capacity, spiking
neural networks.

I. INTRODUCTION

HE spiking neural networks (SNNs) use discrete spike
sequences to convey information, which is more con-
sistent with how the brain processes information. Although
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the binarized sequences bring high energy efficiency [1] and
robustness [2], they also reduce the representation ability of
the spiking neural networks. The non-differential nature of the
spikes also makes it challenging to apply the backpropagation
algorithm directly to the training of SNNs. Therefore, training
high-performance SNNs has been a pressing problem for re-
searchers.

In addition to the conversion-based method [3], [4], which
converts the well-trained deep neural networks into SNN,
the proposal of surrogate gradient makes it possible to train
a high-performance SNNs [5], [6]. Researchers have tried to
close the performance gap in several ways. Some researchers
have borrowed mature techniques from deep learning and ap-
plied techniques such as normalization [7], [8], [9], [10] and
attention [11], [12], [13], etc. to the training of SNNs. This
greatly improved the performance of SNNs but ignored the
characteristics of SNNs. Some researchers have tried to improve
and enhance the learning ability of SNNs structurally by borrow-
ing more complex connections in the brain. BackEISNN [14]
took inspiration from the autapses in the brain and introduced
the self-feedback connection to regulate the precision of the
spikes. LISNN [15] modeled the lateral interactions between the
neurons and greatly improved the performance and robustness.
However, these methods have improved the learning ability of
SNN s to some extent, but they are still far from artificial neural
networks (ANNS).

Spiking neurons have rich spatio-temporal dynamics and are
highly capable of information processing. Beniaguev et al. [16]
found that it takes a multilayer neural network to simulate
the complexity of a single biological neuron. Aware of the
computational power of spiking neurons, researchers have ex-
plored several approaches to building more adaptive and efficient
neurons. For instance, [17] introduced neural oscillation and
spike-phase information to construct resonant spiking neurons,
enhancing temporal dynamics. Additionally, hybrid neural cod-
ing approaches have been explored, such as integrating rate
and temporal coding for pattern recognition tasks [18] and for
scalable neural speech coding [19], aiming to balance efficiency
and representation capacity. Synaptic delays, as explored by Yu
et al. [20], have been utilized to enhance multispike learning,
while axonal delays have been proposed as a mechanism for
short-term memory in feedforward deep SNNs [21], improv-
ing temporal information retention. Furthermore, [22], [23]
introduced learnable time constants to boost the performance
of SNNs across various tasks. Shen et al. [24] investigated
nonlinear dendritic adaptive computation to further extend the

2471-285X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 12,2025 at 07:20:08 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-4069-2107
https://orcid.org/0000-0002-0593-8650
https://orcid.org/0000-0002-9595-9091
mailto:shenguobin2021@ia.ac.cn
mailto:zhaodongcheng2016@ia.ac.cn
mailto:yi.zeng@ia.ac.cn

SHEN et al.: EXPLOITING HIGH PERFORMANCE SPIKING NEURAL NETWORKS WITH EFFICIENT SPIKING PATTERNS

dynamical range of spiking neurons. Other researchers have
proposed adaptive mechanisms like adjustable thresholds [25],
[26], which control the firing of spiking neurons. These advance-
ments greatly enrich the dynamical properties of spiking neu-
rons, but the inherent binary representation of SNNs continues
to create a performance gap compared to float-based ANNSs.

Other researchers tried to design a better surrogate gradient
function to reduce the information mismatch caused by inac-
curate gradients in backpropagation. [27] proposed a gradual
surrogate gradient learning algorithm to ensure the precision
as well as the effectiveness of the gradient during backpropa-
gation. [25] proposed activity-regularizing surrogate gradients,
which exceeded the state-of-the-art performance for SNNs on
the challenging temporal benchmarks. [28] introduced the adap-
tively evolved Differentiable Spike functions to find the optimal
shape and smoothness for gradient estimation based on their
finite difference gradients. However, the binarized information
transfer method still limits the representation ability of SNN.

As a result, some researchers try to enrich the representation
ability of SNNs. [29], [30] introduced the negative spikes to co-
operate with the regular positive spikes. However, the behavior
of releasing negative spikes below the threshold is not consistent
with the human brain. [31] proposed the leaky integrate and
analog fire neuron model to transmit the analog values among
neurons, bringing performance improvements and significantly
increasing energy consumption. The brain does not maintain
a single spiking pattern for the same input. The coupling of
different spiking patterns greatly enriches the representation
ability of the spiking neurons and will adaptively cooperate to
complete different cognitive functions. As the most commonly
observed pattern in different brain regions, bursts might im-
prove the selective communication between neurons [32], the
number of spikes of the high-frequency bursts is highly robust
to noise [33]. Although there exist some works with the burst
spikes [34], [35], their burst intensities are fixed and do not
change dynamically according to the input.

In this paper, we introduce the modeling of Leaky Integrate
and Fire or Burst (IF&B) neurons with three spiking patterns:
resting, regular spike, and burst spike. Experiments show that
our algorithm not only dramatically improves the performance
of the current SNNs, but also significantly reduces the latency
and energy consumption. Our contributions are summarized as
follows:

® Weintroduce the information capacity of SNNs and discuss
the relationship between the information capacity and the
simulation length and spike patterns. We experimentally
verify that the neurons with triple-valued spike representa-
tion have the best performance under the same upper bound
of information capacity.

e We improved the Leaky Integrate and Fire or Burst neuron
(IF&B) so that the bursting strength of neurons can be adap-
tively adjusted while maintaining the optimal triple-valued
spike representation while further improving the perfor-
mance of SNNs, as shown in Fig. 1. We also exhibit that
an IF&B neuron can be decoupled into two LIF neurons,
which allows the IF&B neuron to be easily implemented
on neuromorphic hardware.

1481

Synapses IF&B Neurons

Input Regular Spike

Membrane Burst Spike

" ) N Potential @ @@ A
8 | 2Seeg e |
‘ ] iz ANV Ql [H—..| :

1 H NN SIS T
i MQ@@ NN
Qe @rosrswie () mesmne

Fig. 1. Tllustration of the spiking neural network with our Leaky Integrate
and Fire or Burst Neuron. After the network receives the input, the IF&B
neurons show three spiking states: regular spike, burst spike, and resting, which
significantly improve the representation ability of SNN.

® We conduct experiments on the static image datasets CI-
FAR10, CIFAR100, and ImageNet and the neuromorphic
datasets DVS-CIFAR10 and NCALTECHI101 to verify
the superiority of our model. We achieve state-of-the-art
performance on these datasets and achieve excellent per-
formance using only minor simulation steps.

II. METHOD
A. Leaky Integrate and Fire Model

The spiking neuron serves as the fundamental computational
unit in SNNs. Neuroscientists have established various math-
ematical models such as the Hodgkin-Huxley spiking neuron
(H-H) [36], the Izhikevich spiking neuron [37], Leaky Integrate
and Fire spiking neuron (LIF) [38] to describe the dynamic
characteristics of biological neurons. More complex mathemat-
ical models can also better describe the computational process
of biological neurons. However, they also require more com-
putational resources, while the overly complex properties are
challenging to apply to the modeling of large-scale SNNs. As
the most common spiking neuron model, the LIF neuron model
is widely used in deep SNNs.

dv

= I
Tdt v+ 1,
if v > vy, , then v < vV,g (D)
s=H(v—wvw) 2)

In the (1), v is the membrane potential, [ is the input current,
and vy, 1s the threshold. When the neuron reaches the threshold,
it will deliver a spike, and the membrane potential is reset to the
resting potential v,¢. 7 is the membrane time constant, which
controls the rate of decay of the membrane potential over time.
s denotes the neuronal spikes, H (-) denotes the heaviside step
function.

The LIF model can be regarded as an integrator, capable of
firing regular spikes at a constant rate and adjusting the firing
rate according to the input current. To facilitate the calculation,
we obtain the discrete form of (1):

v(t+1)=v(t) + 1(—v(t) +1(t)) 3)

-
Although there are many improvements for spiking neurons,

they are limited to LIF neurons. The over-simplified compu-
tational characteristics of LIF neurons make it only possible to
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characterize regular spikes and cannot describe complex spiking
patterns. There is a big gap between the LIF model and real
biological neurons.

B. Information Capacity for SNNs

Spiking neurons convert continuous membrane potentials into
discrete spikes s € S = {0, 1}, using spike trains over T time
steps to transmit information. This differs significantly from the
continuous, real-valued outputs used in ANNSs, leading to dif-
ferences in performance and computational requirements. Here,
we analyze how simulation length and other factors influence
the performance of SNNs and explore the relationship between
SNNs and ANNs from the perspective of information capacity.

Consider a spiking neuron whose output is represented as a
t-dimensional Boolean vector S = {0, 1}, where each element
in the vector corresponds to a spike (1) or no spike (0) at a
particular time step. The behavior of this neuron can be described
using a (linear) threshold function f : S — {0, 1}, defined as:

f(s) = H((a,s) + ),

where (a, s) denotes the dot product between a weight vector
a € R! and the spike train s, and b is a bias term. The Heaviside
step function H(-) outputs 1 if its argument is positive and O
otherwise. This function models the decision-making process
of a spiking neuron, determining whether it fires based on the
input spike pattern s.

The set of all possible threshold functions on S is denoted
by T'(S). The size of this set, |T'(.5)|, represents the number of
distinct ways the neuron can respond to different spike trains.
We define the information capacity C'(.S) of a spiking neuron in
terms of the logarithm of the number of threshold functions:

s €S, 4)

C(S5) = logy [T(S)]. Q)

This equation quantifies how many different input-output
mappings (threshold functions) the neuron can implement. The
more threshold functions a neuron can realize, the higher its
capacity to differentiate between various input spike patterns.

To estimate |T'(.5)|, we can use a geometric interpretation of
threshold functions. The set S can be viewed as a ¢-dimensional
space, where each dimension corresponds to a time step in the
spike train. Each threshold function partitions this space using
hyperplanes, which separate different regions where the neuron
outputs O or 1.

The number of regions L(m, n) that m hyperplanes can create
in an n-dimensional space (with n = ) is given by:

n—1
L(m,n) < 22 (mk— 1), (6)
k=0

where (mkj 1) is a binomial coefficient. This inequality describes
the maximum number of connected regions that can be formed
by m hyperplanes passing through the origin in R™. Each region
corresponds to a different output behavior of the threshold
function. Here, m = |S| = 27 represents the number of different
spike patterns, and n = ¢ is the dimensionality of the space.
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Using (6), we can approximate the upper bound of |T°(5)|:

rsn<2y (%)) @

k=0
To estimate the sum of binomial coefficients, we use a basic
inequality for binomials:

5=

which holds when k£ < n. Applying this to our binomial terms,

we get:
2t 1 e-2t\F e-2t\*

This simplification leads to:

t—1 t
2t —1 -2t
3 ( ) ~ (e ) . (10)
k t
k=0
Substituting back into (7), we find:
AN
IT(S)] §2<6t > . (11)
Taking the logarithm yields the information capacity:
AN
C(S) < log, [2 <et ) 1 . (12)
Expanding this further gives:
e- 2
C(S) <1+tlog, ; (13)
=1+ tlogy(e) + t* — tlogy(t). (14)

For a spiking neuron with a simulation length ¢ and | S| = 2°,
this can be approximated as:

C(S) <14 t* —tlog, <Z> . (15)

This result shows that the information capacity of a spiking
neuron increases with the square of the simulation length ¢,
modulated by a term ¢ log,, ¢.

In contrast, ANNs use floating-point numbers to represent
neuron activations, allowing them to convey information more
compactly than SNNs. An ANN neuron’s activation value can be
considered as a compressed representation of a spike train. Thus,
theoretically, ANNs and SNNs with the same simulation length
have similar information capacities, but the way they utilize that
capacity differs. ANNs condense the information into a single
value, while SNNs distribute it across a sequence of discrete
spikes.

By compressing spike trains into floating-point values, ANNs
achieve higher training and inference efficiency, particularly
with gradient descent optimization, yielding better performance.
SNNs, however, establish temporal relationships among spikes,
making them better suited for processing temporal data, partic-
ularly on neuromorphic hardware optimized for accumulate op-
erations (ACs). Nevertheless, this temporal nature complicates
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SNN optimization, leading to performance gaps compared to
ANNE.

Efficiently organizing spike sequences to maximize perfor-
mance given a limited information capacity remains a key chal-
lenge. Inspired by neuroscience, we recognize that biological
neurons exhibit complex spiking patterns that cannot be easily
captured by short binary spike sequences. By incorporating
more biologically plausible neuron models and optimizing the
organization of spike sequences, we can significantly enhance
the performance of SNNs.

C. Leaky Integrate and Fire or Burst Model

Burst is a vital pattern in neurons, which contributes to
gamma frequency oscillations in the brain, helps reduce neuronal
noise [39], and facilitates selective communication between
neurons [32]. The Leaky Integrate and Fire or Burst (IF&B)
model [40] is an extension of the LIF model, which retains the
function of membrane potential accumulation with input current
while introducing a calcium T-current parameter, bringing new
properties of the burst pattern.

The original IF&B model can better describe the spiking
pattern of neurons, but it also brings about three times the
computational costs of the LIF model [41]. Meanwhile, since
the current directly trained SNNs often have a small simulation
step (4 or even shorter), it is not easy to show the difference
between regular spikes and burst spikes, which also limits the
application of the IF&B model to large-scale SNNs.

Previous studies have made significant strides in the field
of large-scale SNNs by successfully compressing various spike
patterns into a single simulation step [34], [35]. This technique
has enabled the implementation of neurons with burst patterns in
large-scale networks, resulting in improved performance. How-
ever, this approach also poses a significant challenge in terms
of computational complexity. In this work, we delve deeper into
the impact of neurons with burst patterns on SNNs, specifically
from the perspective of network information capacity. Through
rigorous experimentation, we demonstrate that the use of neu-
rons with burst patterns not only improves performance, but can
do so while maintaining the same upper bound on information
transmission.

dv

— =—v+1T
Tdt v+ 1,
if v > vy, ,then v < v, (16)
s=H(w—wvy)+ (k—1)H(v—vp) (17)

In order to capture the impact of burst spikes on neurons in
rough time simulations, we take a macroscopic view of their
effect over a shorter time frame. This approach involves super-
imposing the influence of T-currents on the output of the neuron.
To ensure efficient implementation of burst spiking, we employ
the use of a trainable parameter « to represent the burst strength.
This allows for the burst strength to be adaptively adjusted during
the training process and also ensures a more efficient hardware
implementation of the simplified IF&B mechanism.
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Fig. 2. The relationship between information capacity and performance for

different numbers of states on CIFAR10 using SEW-ResNet-18. The colored
lines represent the number of states each neuron can take at each time step,
while the numbers next to each point indicate the corresponding simulation
time.

D. How to Represent the Burst State

Biological neurons can transmit a large amount of information
in a short period by burst spikes. The introduction of the burst
spike mechanism has dramatically expanded the representation
ability of LIF neurons but also brings additional computational
overhead. Therefore, it is an attractive problem to define the
trade-off between computational overhead and the performance
of IF&B neurons.

We consider the problem of representing burst spikes from
the perspective of the information capacity of neural networks.
A sequence of spikes with bursts of length ¢, can be represented
as s = {0,1,K1,k2 ..., /ﬁn,g}t. where n is the possible states
at the moment. According to (14), for such a sequence of spikes
with burst states, the upper bound of its information capacity is:

9 1
O(S) <1+ t2logy(n) — tlog, (Et) (18)

To select an efficient representation of burst spikes, we tested
the relationship between the upper bound of information ca-
pacity and the performance of spike sequences with a different
number of states.

As shown in Fig. 2, the neuron with only two states (LIF
neuron) has the lowest performance. The introduction of the
burst mechanism has tremendously improved the neuron’s per-
formance. It performs better if the neuron can represent multiple
states at one moment. However, as the simulation time increases,
too many spike states will affect the overall performance of
the neuron, while n = 3 is a trade-off between the short-time
performance of the neuron and the overall performance with
temporal information. Therefore, we will use S = {0,1, s} to
define the output states of the IF&B neuron.
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Fig. 3. A IF&B neuron can be decoupled into two LIF neurons. From top to
bottom: LIF neuron, IF&B neuron, and LIF neuron decoupled by IF&B neuron.

It is worth mentioning that to introduce very few parame-
ters and increase the support of neurons for burst spiking, we
consider a learnable, channel-sharing burst intensity of x. All
neurons of the same channel use the same «, which is negligible
compared to the number of parameters of the network. To allow
the burst intensity to be optimized, « is adjusted during the train-
ing process using gradient descent along with other parameters.
We use the momentum method to ensure the stability of the burst
intensity:

Ak = pAk + 68—5
oK

In (19), % denotes the gradient propagated from the deep
layer. p is the momentum, and e is the learning rate. We do not
restrict the range of x, and use x = 1 as the initial value.

1) Decoupling of IF&B Neurons: We present a method that
can efficiently implement IF&B neurons on neuromorphic hard-
ware that is fully compatible with existing hardware without any
modification. The IF&B neuron exhibit two different spiking
patterns, so it can also be decoupled into two neurons with the
same input current, as shown in Fig. 3. This makes it easy to
deploy IF&B neurons on hardware designed for LIF neurons
while achieving better performance.

19)

III. EXPERIMENT

In this section, we evaluate the performance of the pro-
posed IF&B Neuron on the image datasets CIFAR10 [42],
CIFAR100 [43] and ImageNet [44] and the neuromorphic
datasets DVS-CIFAR10 [45] and NCALTECHI101 [46] with
BrainCog [47]. The model structures used in this paper in-
clude VGG16 [48], ResNet20 [49], ResNet19 [8], ResNet18-
sew [50], and SNN6 (64C3-128C3-AP2- 256C3-AP2- 512C3-
AP2-512C3-AP2-FC).

In the IF&B Neuron, vy, is set to 0.5, v, is set to 0, and
vy, representing the threshold for burst firing, is set to twice
V¢p, 1.€., 1.0. 7 is the membrane time constant and is set to
2.0. s represents the burst intensity and is initialized to 1.0. We
use the Adam optimizer for training, with a learning rate set
to 5 x 1073 and momentum set to 0.9. The batch size is set to
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TABLE I
COMPARISON WITH EXISTING WORKS ON CIFAR10 AND CIFAR100

Model Architecture S‘f“lat“’“ CIFAR10 CIFAR100
ength

Bu et al. [3] ResNet-18 4 90.43 75.67
Rathi et al. [53]  ResNet-20 250 92.22 67.87

Rathi & Roy [54] ResNet-20 10 92.54 64.07

Wu et al. [5] CIFARNet 12 89.83 -

Wu et al. [9] CIFARNet 12 90.53 -
Zhang & Li [6] CIFARNet 5 91.41 -
Shen et al. [1]  7-layer-CNN 8 92.15 69.32
Kim et al. [55] NAS 5 92.73 73.04
Na et al. [56] NAS 16 93.15 69.16
Zheng et al. [8] ResNet-19 6 93.16 -
Deng et al. [57] ResNet-19 6 94.50 74.72
Guo et al. [58] ResNet-19 6 95.55 74.10
Guo et al. [59] ResNet-19 2 95.80 80.20
Zhou et al. [60] Spikformer 4 95.19 77.86
Zhou et al. [61] Spikingformer 4 95.61 79.09

ResNet-19 1 95.9440.09 77.8640.43
ResNet-19 2 96.014+0.07 78.0440.37
Our Method ResNet-19 4 96.2140.10 78.1240.51
ResNet-19 6 96.324+0.06 78.3140.58
Spikformer 1 95.561+0.07 79.84+0.46
Spikformer 4 96.034+0.04 80.7240.42

64. For all datasets, the training is set for 300 epochs. Since the
spiking process is non-differentiable, a surrogate gradient [51] is
used to enable backpropagation [52]. We use the same surrogate
gradient function as Wu et al. [5], as shown below:

ast _ 2 . 1
B (a0 — a” ug) sign (a ut|>

In (20), o controls the width of the surrogate gradient function,
which is set to 2 in our experiments.

(20)

A. Comparison With Other Methods

To verify the effectiveness of our algorithm, we compare it
with several current best SNNs, including conversion-based and
backpropagation-based. The results for the static image data and
the neuromorphic data classification task are listed in Tables I, II,
and III. For the static image datasets, we report the performance
at simulation steps 1, 2, 4, and 6 to highlight the accuracy at
different temporal scales.

For CIFAR 10 and CIFAR 100, IF&B achieves higher accuracy
than previous work at a simulation length of 1. In particular,
using the same network structure and simulation step length,
our IF&B also has a significant advantage, improving 0.59%
and 3.31% on CIFAR10 and CIFAR100 compared with Rec-
Dis [58].

For the more challenging ImageNet dataset, we achieve
65.60% accuracy using only the lightweight ResNet18 struc-
ture. Moreover, we achieve better performance than SEW-
ResNet152. [22] when using the SEW-ResNet34 structure only
at a simulation length of 1. Our IF&B achieves 2.02% improve-
ments using the same structure and simulation length as previous
work.

When ¢ = 1, our IF&B neurons may appear similar to quan-
tized artificial neural networks (ANNs) with multiple states.
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TABLE II
COMPARISON WITH EXISTING WORKS ON IMAGENET

Simulation Params OPs Power

Model Methods Architecture Length (M) (G) (mJ) Accuracy
Rathi et al. [53] Hybrid Training ResNet-34 250 21.79 - - 61.48
Guo et al. [59] Ternary Spike ResNet-34 4 21.79 - - 70.74
Zheng et al. [8] STBP-tdBN Spiking-ResNet-34 6 21.79 6.50 6.39 63.72
SEW-ResNet-34 4 21.79 3.88 4.04 67.04
SEW-ResNet-50 4 25.56 4.83 4.89 67.78
Fang etal. 221 SEW ResNet SEW-ResNet-101 4 4455 930 891 68.76
SEW-ResNet-152 4 60.19 13.72 12.89 69.76
Spikformer-8-384 4 16.81 6.82 12.43 70.24
Zhou et al. [60] Spikformer Spikformer-8-512 4 29.68 11.09 18.82 73.38
Spikformer-8-768 4 66.34 22.09 32.07 74.81
Spikingformer-8-384 4 16.81 3.88 4.69 72.45
Zhou et al. [61] Spikingformer Spikingformer-8-512 4 29.68 6.52 7.46 74.79
Spikingformer-8-768 4 66.34 12.54 13.68 75.85
SEW-ResNet-18 1 11.68 0.54 0.53 65.60
SEW ResNet SEW-ResNet-34 1 21.79 1.07 1.04 69.34
Our Method SEW-ResNet-34 4 21.79 4.27 421 70.02
Spikformer Spikformer—8—512 1 29.68 2.78 5.07 72.47
Spikformer-8-512 4 29.68 11.09 21.03 76.64
TABLE III o CIFAR10 CIFAR100
COMPARISON WITH EXISTING WORKS ON NEUROMORPHIC DATASETS | 78 e -
96wk
/’__<
. Simulation * / 7
Dataset Model Architecture L Accuracy _ ) _
ength fo g
Zheng et al. [8]  ResNet-19 10 67.8 g | En o
Kugele et al. [62]  DenseNet 10 66.8 3" pupria g
Wuetal [31]  LIAF-Net 10 71.7 I w
Wu et al. [31] LIAF-Net 10 70.4 Ter Ter
DVS-CIFARI0  Na et al. [56] NAS 16 72.5 o = G 3
Shen et al. [1]  5-layer-CNN 16 78.9 w =p= U s =p= 0
Guo et al. [58] ResNet-19 10 72.4 T ey O T T
Deng et al. [57] VGGSNN 10 83.2
Zhou et al. [60]  Spikformer 10 78.6 Fig. 4. Relationship between simulation length and accuracy on the CI-
Zhou et al. [61] Spikingformer 10 80.6 FAR10/100 dataset.
Our Method SNN7 10 83.840.70
Kugele et al. [62] VGG11 20 55.0
N-Caltech101 Ramesh et al. [63] N/A N/A 66.8
Our Method SNN7 10 81.740.81

However, quantized ANNSs handle different states through multi-
ply/add operations with carry, managing discrete levels of quan-
tization. In contrast, our approach introduces a burst mechanism,
allowing neurons to dynamically adjust their spiking strength in
response to varying inputs, enriching temporal representation.
The burst mechanism enables IF&B neurons to achieve a more
efficient and biologically plausible representation, capturing
richer temporal dynamics compared to the arithmetic manip-
ulation of discrete values in quantized ANNs.

The energy efficiency of our method is notable. As shown
in Table II, for the SEW-ResNet-34 architecture, our IF&B
method achieves 2.3% higher accuracy than the original SEW
ResNet while requiring only a single simulation step. Moreover,
the energy consumption of IF&B is approximately one-quarter
of that of the original method, consuming just 1.04 mJ. This
demonstrates that although our method involves fewer bursts,
these bursts are highly effective, leading to both accuracy im-
provements and lower energy requirements.

A similar advantage is observed with the Spikformer architec-
ture. At a simulation length of 1, IF&B with the Spikformer-8-
512 structure achieves competitive accuracy while consuming
significantly less power, using only 2.78 mJ compared to the

5.07 mJ required by the original Spikformer. In terms of energy
consumption calculations, we have demonstrated that a single
IF&B neuron can be decoupled into two LIF neurons, allowing
us to use the same calculation method as Spikformer. Addition-
ally, we treat the energy consumed by spikes and bursts as equiv-
alent, summing them for the final calculation. This approach
ensures a fair comparison while highlighting the efficiency of
our method in real-world applications where energy constraints
are crucial.

For the neuromorphic dataset DVS-CIFAR10, our IF&B
achieves state-of-the-art performance by using only the SNN7
structure with less than half the parameters of VGGSNN [57].
For the N-Caltech101 dataset, we achieved 83.44% top-1 accu-
racy, achieving a performance far beyond previous work.

To further illustrate the advantages of our IF&B, we show
the comparison with previous methods at different simulation
lengths. As shown in Fig. 4, we compared IF&B with directly
trained SNNs and converted SNNs. Our IF&B shows a signifi-
cant advantage at shorter simulation lengths due to its more vital
representation ability.

B. Ablation Studies

Compared with other advanced methods, IF&B allows models
to exhibit better performance and achieve better top-1 accuracy
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TABLE IV
ABLATION STUDIES ON DIFFERENT NETWORK STRUCTURES AND SIMULATION LENGTHS

Architecture Neuron CIFAR10 CIFAR100
T=1 T=2 T=4 T=6 T=1 T=2 T=4 T=6
VGG16 LIF 92.02 9341 94.13 94.08 66.40 69.18 71.15 71.99
IF&B 94.53 95.02 95.28 95.36 73.00 73.90 74.34 75.02
ResNet19 LIF 93.76 94.44 95.07 95.51 73.70 74.34 75.01 75.62
ese IF&B 9594 9601 9621 9632 7786 7804 7812 7831
ResNet20 LIF 83.65 86.47 88.09 89.16 49.93 53.90 57.40 58.17
IF&B 89.72 90.88 91.30 91.65 60.63 62.95 63.28 64.33
LIF 94.27 95.10 95.51 95.60 72.59 74.16 75.68 76.52
SEW-ResNetl8  |peB 9587 9612 9639 9642 7588 7738 7841  78.67
CIFAR10_VGG16 CIFAR10_ResNet20 CIFAR10_ResNet19 9.5 CIFAR10_SEW-ResNet18
* % H%D 90
8o i Ses ’.'/ Saus ,./I g9s0 ’f
N =2 o P e A ) g S s+
|nvurngnon Cap:?:ny |nfun§gnun Cap:?:vty Ir\fomz\gtmr\ Cap:?:\ty \nfurrighcn Cap:?:my z J\ /\ /\ j\ /\
CIFAR100_VGG16 CIFAR100_ResNet20 CIFAR100_ResNet19 CIFAR100_SEW-ResNet18 .
€n . geoo g7 g
570 v 2’55 ;/ 275 r"/A 3 s
6 | —e- LIF ! —e- LF o —e- LF ] -e- LIF
o " LIFB 50 " LIFB. ] LIFB ‘ LIFB,
Information Capacity |moymgﬁgn Capacity \nformghon Capacity Wongm” Capacity
Fig. 5. Effect of neuron type on information capacity and performance.

on classification tasks. We conducted ablation studies to further
verify the contribution of IF&B for different network structures
and simulation lengths.

As shown in Table IV, IF&B maintained its advantage over
LIF neurons for all models and all simulation lengths. [F&B also
has higher accuracy than LIF neurons with longer simulation
time only at the simulation length ¢ = 1. Fig. 5 shows a com-
parison of the impact of neuron type in terms of the information
capacity of neurons. It can be seen that our IF&B still maintains
a higher accuracy than LIF with the same information capacity.

In the original IF&B model, the switching between different
neuronal spiking patterns, such as regular spikes and burst
spikes, is achieved by adjusting the conductance of the calcium
T-current. This biologically inspired mechanism involves slow
adjustments that are difficult to apply effectively in short simu-
lation settings, especially in large-scale spiking neural networks
(SNNs) due to their computational cost. To address this, we
propose a simplified version of the IF&B neuron, which directly
integrates the effect of T-current conductance into the neuron
output through a learnable parameter «. This parameter allows
for the dynamic adjustment of burst intensity, thus enhancing
the flexibility of neuronal behavior while maintaining computa-
tional efficiency.

Fig. 6 illustrates the distribution of burst intensity across
different layers of SEW-ResNetl8 trained on the CIFARIO
dataset. This figure shows how burst intensity varies between
layers, highlighting that the adaptive burst mechanism is not
uniformly distributed but instead tailored across the network
based on each layer’s specific role in feature extraction and
information processing. The variation observed indicates that the

J\/\J\/\A

Fig. 6. Distribution of burst intensity of well-trained SEW-ResNetl8 on
CIFARI10.
TABLE V
COMPARISON OF FIXED/LEARNABLE BURST INTENSITY OF VGG16 ON
CIFARI10
x  LIF 0.5 1 1.5 2 learnable
92.02 9213  94.17 9411 9352 94.53

deeper layers tend to exhibit more dynamic burst activities, while
the earlier layers maintain a more stable pattern. This suggests
that deeper layers may benefit more from dynamic adjustments,
leveraging the learnable x to better capture and process complex,
high-level features.

Additionally, we conducted an ablation study to further assess
the impact of learnable burst intensity. As shown in Table V,
we compared neurons with fixed burst intensity to those with
learnable burst intensity on the CIFAR10 dataset, observing
significant improvements in top-1 accuracy for the latter. This
highlights the importance of adaptive burst mechanisms in
boosting the performance of SNNs. Fig. 6 effectively visualizes
the diverse burst intensities learned across the network, empha-
sizing how our proposed approach enables efficient and flexible
spiking behaviors that enhance the model’s overall representa-
tional power.

While both IF&B neurons and PosNeg neurons aim to en-
hance the representational capability of spiking neurons, there is
a fundamental difference in their approach. IF&B neurons lever-
age burst mechanisms, allowing different channels to exhibit
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TABLE VI
COMPARISON OF IF&B NEURON WITH POSNEG NEURON ON CIFAR10

Neuron / Step  T=1 T=2 T=4 T=6
PosNeg 93.87 94.16 9433 9443
IF&B 9453 9491 9517 95.15

varying burst intensities, which provides rich representational
capabilities and aligns more closely with biological plausibility.
In contrast, PosNeg neurons utilize both positive and negative
spikes, which may enhance representation in certain contexts but
diverges from the typical spiking behavior observed in biological
neurons. IF&B neurons maintain a more natural spiking pattern
while still achieving strong performance.

The learnable channel-sharing burst intensity enables neurons
to learn the appropriate burst from the data, and neurons can
achieve bursts of arbitrary strength compared to regular spikes,
which is more biologically plausible and enhances the perfor-
mance of SNNG.

C. Comparison With Other Triple-Value Neurons

By considering the different spiking patterns of neurons, we
design IF&B neurons that can exhibit triple neuronal states: rest,
regular spike, and burst spike. Our IF&B neuron expands the
representation ability of neurons, is more biologically plausible,
and exhibits better energy efficiency and performance than other
binary-value neurons.

In addition to our IF&B neuron, there are many works that
enable neurons to fire positive and negative spikes (PosNeg) to
achieve triple-value representation [29], [30]. Here we consider
the same approach.

We compare our IF&B neuron with the PosNeg at different
simulation lengths on CIFAR10 dataset as shown in Table VI.
Our IF&B neuron shows better performance at different simu-
lation lengths.

D. Loss Landscape Around Local Minima

We further show the 2D landscapes of SNNs with different
types of neurons around their local minima [64] to verify the
effect of IF&B neurons on the generalization ability. As shown in
Fig. 7, we show the local 2D landscape of the VGG16 model on
CIFAR10/100, using different neurons. It can be seen that [F&B
Neuron finds flatter local minima and more minor losses. This
further demonstrates the ability of the IF&B neuron to enhance
the representation and generalization of the model.

E. Comparison of IF &B With Decoupled LIF

IF&B neuron achieves much better performance than LIF
Neuron by better modeling biological neurons, but this also
entails additional computational overhead. Although the above
experiments have demonstrated that IF&B neurons perform
better than LIF neurons with longer simulation times, this cannot
be achieved by increasing computational resources. To further
illustrate that the performance gain of IF&B neurons comes
from more reasonable modeling rather than more computational
resources, we performed a fairer comparison.
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Fig. 7. Comparison of loss landscapes of different neurons on VGG16.

TABLE VII
COMPARISON OF IF&B NEURONS AND EQUIVALENT DECOUPLED LIF
NEURONS TRAINED FROM SCRATCH ON VGG16

Neuron / Step  T=1 T=2 T=4 T=6
LIF 92.02 9341 94.13 94.08
Scratch 9378 9436 94.83  95.02
IF&B 94.53  95.02 9528 9536

xxxxx

Il

77777

Fig. 8.  Visualization of neural activity of IF&B neurons on DVS-CIFAR10
dataset of VGGT7.

As discussed in Section II-D1, a IF&B neuron can be de-
coupled into two LIF neurons with the same input current and
different threshold voltages. We, therefore, compared the IF&B
Neuron with its equivalent decoupled LIF neuron trained from
scratch, as shown in Table VII. The results directly indicate
that most of the performance gains from IF&B neurons come
from well-formulated spiking pattern design rather than from
the higher computational costs.

F. Visualization of Neural Activity

The neural activity of VGG7 on CIFAR10 dataset with [IF&B
neurons at different layers is shown in Fig. 8. We randomly
selected 50 neurons in each layer, with cyan color indicating that
the neuron is at a regular spike state and dark cyan indicating
that the neuron is at a burst spike state. Although neurons are
rarely in burst mode, this biologically plausible neuron model is
essential for the performance of SNNs.
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IV. CONCLUSION

Inspired by the multi-spike delivery form of the brain, we
design an efficient Leaky Integrate and Fire or Burst neuron
model with triple-valued output from the perspective of network
information capacity, while the burst density in [F&B can be
adaptively adjusted. This multi-spike issuing form of synergistic
neurons greatly enriches the characterization capability of the
SNNs. Experimental results on static datasets CIFAR10, CI-
FAR100, and ImageNet show that we only need one simulation
step to achieve a very high accuracy, which significantly re-
duces the latency of the SNNs. Also, we achieve state-of-the-art
performance on the neuromorphic datasets DVS-CIFAR10 and
NCALTECHI101.

The proposed IF&B neuron model has the potential for
real-world applications that require low-power, efficient, and
robust neural computation. For example, neuromorphic hard-
ware incorporating IF&B neurons could be considered for edge
computing tasks such as real-time image recognition, where both
low latency and energy efficiency are important. The adaptive
burst mechanism may also offer benefits in scenarios needing
biologically plausible signal processing, such as medical devices
or robotics that involve sensory processing and decision-making.
By achieving high accuracy with minimal simulation steps, our
approach could contribute to the development of energy-efficient
Al systems with practical applicability.
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