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THE BIGGER PICTURE The spiking neural network (SNN) captures more important aspects of brain infor-
mation processing and has been applied to various domains. The biggest problem restricting the develop-
ment of SNN is the training algorithm. Backpropagation (BP)-based training has extended SNNs to more
complex network structures and datasets. However, the traditional design of BP ignores the dynamic char-
acteristics of SNNs and is not biologically plausible. This paper rethinks the problems in BP-based SNNs
and proposes a biologically plausible spatiotemporal adjustment to replace the traditional artificial design.
The adjustment greatly improves the performance of the SNNs and reduces energy consumption and la-
tency. The long-term ambition of this research is to take more inspiration on learning mechanisms and
structures from the cognitive brain at different levels of details to build even more biologically plausible
SNNs as a foundation for future artificial intelligence models.

o 2 eee Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

The spiking neural network (SNN) mimics the information-processing operation in the human brain. Directly
applying backpropagation to the training of the SNN still has a performance gap compared with traditional
deep neural networks. To address the problem, we propose a biologically plausible spatial adjustment
that rethinks the relationship between membrane potential and spikes and realizes a reasonable adjustment
of gradients to different time steps. It precisely controls the backpropagation of the error along the spatial
dimension. Secondly, we propose a biologically plausible temporal adjustment to make the error propagate
across the spikes in the temporal dimension, which overcomes the problem of the temporal dependency
within a single spike period of traditional spiking neurons. We have verified our algorithm on several datasets,
and the experimental results have shown that our algorithm greatly reduces network latency and energy con-
sumption while also improving network performance.

INTRODUCTION neural networks (SNNs) are known as the third-generation artifi-

cial neural network.” They have been widely used in many fields,
Deep neural networks (DNNs) have achieved success in various ~ such as semantic segmentation,® visual explanations,® privacy
research areas, such as object detection,’ visual tracking,” face  protection,”® and object detection.® The discrete spikes used
recognition, etc. However, they are still far away from the infor-  to transmit information are more energy efficient and are more
mation-processing mechanisms of the human brain. Spiking in line with the information-processing mechanism in the brain.

Patterns 3, 100522, June 10, 2022 © 2022 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



mailto:yi.zeng@ia.ac.cn
https://doi.org/10.1016/j.patter.2022.100522
http://creativecommons.org/licenses/by-nc-nd/4.0/

networks, Patterns (2022), https://doi.org/10.1016/j.patter.2022.100522

Please cite this article in press as: Shen et al., Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural

¢ CellPress

Combined with neuromorphic computing, '

realize real intelligence.

However, due to the complex neural dynamics and non-differ-
ential characteristics of SNNs, it is still a challenge to train SNNs
efficiently. Existing SNN training methods can be roughly divided
into three categories: the biologically plausible method, the con-
version method, and the backpropagation-based method.

The biologically plausible method, such as Hebbian learning
rules'’ and spike-timing-dependent plasticity (STDP),'? is
mainly inspired by the synaptic learning rules in the human
brain. The Hebbian theory believes that the connection be-
tween pre- and post-synaptic neurons will increase due to
continuous and repetitive stimulation of pre-synaptic neurons.
STDP is an extended Hebbian learning rule based on the tem-
poral difference between pre- and post-synaptic neurons. Diehl
et al."® used the STDP learning rule and lateral inhibition in a
two-layer SNN and achieved 95% accuracy on the MNIST da-
taset. Saeed et al.'* introduced a weight-sharing strategy and
designed a spiking convolutional neural network. The weight
was learned by the STDP layer-wisely. Kherapisheh et al.'®
used the hand-crafted difference of Guassian (DoG) features
as the input of the SNNs and trained the subsequently convolu-
tional layer through STDP. These methods rely on the local ac-
tivities of neighboring neurons to update network weights and
lack the supervision of global signals. Although Zhao et al. de-
signed a multi-layer SNN based on global feedback connec-
tions and local optimization learning rules (GLSNN), '° it still per-
forms poorly when transplanted to some deep networks for
some complex tasks.

The conversion method is an alternative way to get high-per-
formance SNNSs. It first trains the well-performed DNNs, then
converts the DNNs into SNNs with some additional adjust-
ments.'”?" The analog values of DNNs are converted into the
firing rates of SNNs. Although the conversion method makes
the SNNs achieve performance close to the traditional DNNs,
the simulation time is too long, which causes the network to
have poor real-time performance and high energy consumption.
Also, the conversion methods rely highly on the well-trained
DNNs and do not take advantage of the temporal information
of SNNs.

The success of deep learning depends heavily on the proposal
of the backpropagation algorithm. Several studies provide evi-
dence for backpropagation in the brain. The feedback connec-
tions may make predictions of activities of low-level brain
areas,””*° and the biological neurons will backpropagate the
action potentials to provide crucial signals for synaptic plas-
ticity.?™ Lillicrap et al.®* argued that the differences with the
feedforward and feedback neural activities may locally approxi-
mate the error signals in backpropagation. Researchers in SNN
domains also introduced the backpropagation algorithm into the
optimization of SNNs with the surrogate-gradient method.®'~**
Surrogate gradient helps SNNs perform backpropagation
through time (BPTT) so that SNNs can be adopted to larger-scale
network structures, such as VGG, ResNet, etc., and perform bet-
ter on more complex datasets. However, directly applying the
surrogate gradient into the training of SNNs may lead to some
problems. First, the surrogate gradient obtains the gradient by
smoothing the spike firing function. Neurons with membrane po-
tential around the threshold will participate in the backpropaga-

it promises to
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tion. As a result, the neurons that do not emit spikes may partic-
ipate in weight updating, significantly increasing the network’s
energy consumption. Second, the spiking neuron will reset to
the resting potential after the spike is emitted. The reset opera-
tion will cut off the error along the temporal dimension during
the backpropagation so that errors cannot propagate across
spikes, which significantly weakens the temporal dependence
of the SNNs. To address the problems mentioned above, we
introduced a biologically plausible spatiotemporal adjustment
to improve the backpropagation training of SNNs, which can
be summarized as follows:

o We study the influence of the surrogate gradient on the
spatial dimension of the SNNs, rethink the relationship be-
tween the neuron membrane potential and the spikes, and
propose a more biologically plausible spatial adjustment
(BPSA) to help regulate spike activities.

o We study the limitations of the surrogate gradient in the
temporal dimension and introduce a more biologically
plausible temporal adjustment (BPTA), which enables the
SNNs to propagate errors across the spikes, enhancing
the temporal dependence of the SNNs.

® We conduct experiments on several commonly used data-
sets. For the static datasets MNIST, CIFAR10, and
CIFAR100, we get remarkable performance compared
with other state-of-the-art SNNs. To the best of our knowl-
edge, we have reached state-of-the-art performance for
the neuromorphic datasets N-MNIST, DVS-CIFAR10, and
DVS-Gesture. For the Google Speech Commands dataset,
we have reached comparable performance with other arti-
ficial neural networks designed for speech recognition.
Moreover, our method dramatically reduces energy con-
sumption and latency through analysis compared with
other state-of-the-art SNNs.

RESULTS

In this section, we conduct experiments using the PyTorch
framework®® with NVIDIA A100 graphic processing unit (GPU).
The network weights are initialized with the default method of Py-
Torch. We use the AdamW?®® algorithm as the optimizer, the
learning rate Ir is set with 1 x 107, and the same learning rate
control strategy as in SGDR®” is used. The same method in tem-
poral spike sequence-learning backpropagation (TSSL-BP) is
used to warm up the model. The membrane potential threshold
uy, of the neuron is set to 0.5, the membrane potential decay
constant 2 = 0.9, and the default simulation duration T is set
to 16. The training epochs are set to 300. The « in Equation 10
is set to 0.2. First, we conduct experiments on the static
MNIST, CIFAR10, and CIFAR100 datasets. To further illustrate
the superiority of our algorithm, we also conduct experiments
on the neuromorphic datasets N-MNIST,*® DVS-Gesture,*®
and DVS-CIFAR10.“° And to demonstrate the adaptability of
our algorithm in other domains, we conduct experiments on
the speech-recognition dataset Google Speech Commands.*’
For the static datasets, we use the direct input encoding used
in Wu et al.®” as well as the voting strategy. For the neuromorphic
dataset, we use the same data preprocessing strategy used in
SpikingJelly.*? For different datasets, we designed three
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Table 1. Classification accuracy on MNIST, CIFAR10, and
CIFAR100 datasets

Table 2. Classification accuracy on N-MNIST, DVS-Gesture, and
DVS-CIFAR10 datasets

Training DVS- DVS-
Models method MNIST  CIFAR10  CIFAR100 Models Method  N-MNIST  Gesture  CIFAR10
Spiking CNN** conversion - 82.95 - HM2-BP ** BP 98.88 = =
BackRes*® BP - 84.98 - SLAYER *° BP 99.2 93.64 -
ContinueSNN*° conversion 99.44  90.85 = TSSL-BP 30 ** BP 99.28 = =
Spike-Norm® conversion - 91.55 - IIRSNN ** BP 99.28 - -
STBP?! BP 99.42 507 - TSSL-BP 100 ** BP 99.4 - -
HM2BP BP 99.49 - - STBP ' BP 99.44 - -
LISNN*’ BP 99.5 - - LISNN 7 BP 99.45 - -
BNTT*® BP - 90.5 66.6 STBP NeuNorm **  BP 99.53 - 60.5
STBP NeuNorm®*  BP - 90.53 BNTT “® BP = = 63.2
BackEISNN“*® BP 99.67  90.93 - SALT °° BP - - 67.1
SBPSNN*® BP 99.59  90.95 = STBP-tdBN °° BP = 96.87 67.8
TSSL-BP** BP 99.53  91.41 - LMCSNN *7 BP 99.61 97.57 74.8
ST-RSBP*° BP 99.62 - - BackEISNN “° BP 99.57 - -
RNL®’ conversion  99.51 93.45 75.1 Our method BP 99.71 98.96 78.95
SNASNet-Fw 2 NAS + BP - 93.64 70.06
SNASNet-Bw *° NAS + BP - 94.12 73.04 o " ResNet34. A b N
on the network structure ResNet34. As can be seen in the
Our method BP 99.67  92.15 68.28
Table 1, for the CIFAR10 dataset, our network has reached
Our method BP - 94.51 69.32

ResNet34

different network structures to adapt to different sizes and com-
plexities. The small network is 128C3-MP2-128C3-256C3-MP2-
2048FC-DP-10Voting, the middle is 128C3-MP2-128C3-MP2-
256C3-MP2-512C3-AP4-512FC-10Voting, and the large is
128C3-128C3-MP2-128C3-MP2-256C3-MP2-512C3-MP2-1024C3-
AP4-DP-1024FC-10Voting. AP denotes the average-pooling
operation, MP denotes max-pooling operation, DP denotes
neuron dropout,”> and C denotes the Conv-BN-RelU-LIF
operation.

Static datasets

MNIST is one of the most common classification datasets in the
deep-learning domain, with 60,000 training datasets and 10,000
test datasets. The samples in the datasets are 28 x 28 gray-
scale images representing handwritten numbers from 0 to 9,
respectively. We use the small structure for the evaluation. The
CIFAR10 dataset is more challenging for most existing SNNs.
The training set has 50,000 samples, and the test set has
10,000 samples. The datasetis a 32 x 32 color dataset. A deeper
network will achieve better performance. Hence, we adopt the
middle structure to conduct the experiment. CIFAR100 is a
more challenging version than CIFAR10; it has 100 categories,
and each category has only 600 samples: 500 for training and
100 for testing. The network structure is the same with
CIFAR10. Experimental results are compared with several
deep SNN models, including conversion and BP based, as
shown in Table 1.

The spatiotemporal BP (STBP) NeuNorm®? is the STBP
method with the neuron norm. For the normal network struc-
tures we set, our network achieves comparable performance
with other SNN algorithms. Also, in order to illustrate the adapt-
ability of our algorithm to deeper networks, we tested it based

state-of-the-art performance compared with other famous
SNNs, whether based on BP or conversion. For the
CIFAR100 dataset, although our network still has a little gap
compared with RNL®' and SASNet,” the RNL algorithm
directly converts the well-trained DNNs to SNNs, while
SNASNet searches a better network structure based on neural
architecture search (NAS).

Neuromorphic datasets

To better illustrate our spatiotemporal adjustment, we conduct
experiments on the neuromorphic datasets N-MNIST, DVS-
Gesture, and DVS-CIFAR10. N-MNIST is the neuromorphic
version of MNIST. The dynamic version sensor (DVS) is put in
front of the static images on a computer screen. The images shift
due to the DVS moving in the direction in three sides of the isos-
celes triangle in turn, and the two-channel spike event (on and
off) is collected. DVS-Gesture is a real-time gesture-recognition
dataset reported by DVS. The dataset has 11 hand gestures
such as hand clips, arm rolls, etc., collected from 29 individuals
under three illumination conditions. DVS-CIFAR10 is a neuro-
morphic version converted from the CIFAR10 dataset. 10,000
frame-based images are converted into 10,000 event streams
with DVS. For N-MNIST, we use the middle structure, and for
the DVS-Gesture and DVS-CIFAR10, which are more complex,
we use the large structure.

As can be seen in Table 2, for the N-MNSIT dataset, our
method has surpassed STBP by 0.3%; even with the introduc-
tion of NeuNorm, our work still performs better than them. For
the more complex gesture dataset, our model surpasses the lat-
est STBP-tdBN°® by 2% and LMCSNN®” by 1.4%. Our model
has reached state-of-the-art performance compared with
other current famous SNNs. For the DVS-CIFAR10 dataset,
compared with the latest STBP-tdBN, we surpassed them by
nearly 11%. For LMCSNN, which make many parameters in
the leaky integrate-and-fire (LIF) spiking neurons learnable, we
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Table 3. Classification accuracy on Google Speech Commands
dataset

Table 4. The ablation study of the two adjustments on DVS-
Gesture and DVS-CIFAR10 datasets

Models Method Accuracy Baseline BPSA BPSA + BPTA
Sample-level *® DNN 92.53 DVS-Gesture 93.92 97.56 98.96
Attention RNN *° DNN 93.9 DVS-CIFAR10 71.40 75.30 78.95
Sample-level + SE %° DNN 93.95

Harmonic filters °' DNN 96.39 )

Our method SNN 94.2 Ablation study

also surpass them by 4%. Our method has achieved state-of-
the-art performance for the DVS-CIFAR10 dataset.

Speech-recognition dataset
To verify the performance of our algorithm in other domains, we
validate the proposed method on the Google Speech Com-
mands dataset. There are two versions of this dataset, and the
second version is used for testing. There are 105,000 utterances
in 35 categories, and each utterance is 1 s long. The two training
datasets are rebalanced by repeating random samples to make
the number of samples the same in each class.

As can be seen in Table 3, even compared with the artificial
neural networks designed for speech recognition, our algorithm
still shows comparable performance.

Conclusion

In this paper, first, we analyze the existing problems in the SNNs
trained with BP. We find that the current setting will cause the
earlier spiking neurons repeat participating in the gradient calcula-
tion of the network, making a more significant influence on the
network weight. The BPTT algorithm on the SNNs only propagates
errors backward in a single-spike period. The temporal depen-
dence between spikes will be truncated. By introducing the bio-
logically plausible spatial adjustment, it will consider the spikes
generated by the membrane potential of different strengths, which
will have different effects on the parameter update during the
backpropagation process. In addition, the biologically plausible
temporal adjustment is introduced, and it considers the backpro-
pagation across the spikes. We have achieved remarkable perfor-
mance on MNIST, CIFAR10, CIFAR100, and Google Speech
Commands datasets and achieved the current best performance
on N-MNIST, DVS-Gesture, and DVS-CIFAR10 datasets. By
analyzing the energy consumption and latency of the SNNs, we
find that the BPSAs and BPTAs significantly reduces energy con-
sumption and latency while improving performance.

DISCUSSION

In this section, firstly, we conduct the ablation study to the BPSA
and BPTA mentioned above and analyze the contribution of each
module. Secondly, we explore the energy consumption of the
SNNs for these adjustments. Thirdly, we discuss the latency of
the SNNs affected by these adjustments. Finally, we give the lim-
itations of our algorithm and future work. Through the analysis, it
is fully illustrated that the above two adjustments can make the
behavior of the spiking neurons more stable and establish a bet-
ter performance while reducing network latency and energy
consumption.

4 Patterns 3, 100522, June 10, 2022

We conduct the ablation study on the neuromorphic datasets
DVS-Gesture and DVS-CIFAR10 due to the more complex
spatial structure and stronger temporal information, which will
fully illustrate our adjustments’ importance. We use Lillicrap
et al.®" as our baseline and then continue to add the BPSA
and BPTA.

As can be seen in Table 4, with the introduction of the two
adjustments, the performance of the network is gradually
improved, among which the spatial adjustment brings more sig-
nificant improvement.

We also give the test curves of the DVS-Gesture dataset. As
shown in Figure 1, with the number of epochs increasing, the ac-
curacy of the model with biologically plausible spatiotemporal
adjustment fluctuates less. Because with the introduction of
the two adjustments, the firing pattern of neurons is more stable,
making the model more robust to more minor parameter
changes. Meanwhile, a reasonable gradient allocation strategy
in the BP improves the model’s generalization performance
and avoids overfitting to a certain extent.

Energy-efficiency study
To illustrate the energy efficiency of our algorithm, we visualize
the firing frequency of different layers in the MNIST experiment.
As can be seen from the Figure 2, due to the biologically plau-
sible spatiotemporal adjustment, our method exhibits an
extremely low firing rate, especially in the initial convolutional
layers.

We compare the accuracy and energy efficiency of the SNNs
trained by the method used in Wu et al.,®" the model we propose,

100 A

N . ‘*J'Wm

701

Accuracy

60 1
50 1 ’

40 - —— Baseline
—— BPSA + BPTA

0 50 100 150 200 250 300
Epochs

Figure 1. The test accuracy curve on DVS-Gesture of our method
and the baseline
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Figure 2. The firing frequency of different convolutional layers on MNIST of our method and the baseline

and the artificial neural networks (ANNSs) using the same network
structure and network parameters. Most operations in ANNs are
multiply accumulate (MAC), while in SNNs, the spikes trans-
mitted in the network are sparse, and the spikes are integrated
into the membrane potential. As a result, most operations in
SNNs are accumulate (AC) operations. We calculate the energy
consumption of the SNN by multiplying floating-point operations
(FLOPS) and the energy consumption of MAC and AC opera-
tions. We use the same energy-efficiency calculations as in
Chakraborty et al.,°” and the computation details can be seen
in Equation 1.

Eann = FLOPSann X EFi_mac

ESNN = FLOPSSNN X EINT,AC xT (EqUatiOn 1)

As can be seen in Table 5, our method has a lower firing rate
and higher energy efficiency. The training method of the SNNs
proposed in this paper distributes the gradient more reasonably
along the spatial and temporal dimensions, avoiding the problem
that the earlier spiking neurons would have a more significant in-
fluence on the network parameters. The cross-spikes propaga-
tion will also enhance the temporal dependence of the SNNs.
Therefore, the method proposed in this paper achieves lower
network power consumption while maintaining a higher
accuracy.

Latency study

The latency of the SNNs is one of the main problems that re-
stricts the development of SNNs. The spiking neurons need to
accumulate membrane potential, and once they reach the
threshold, they fire spikes and transmit information. Therefore,
SNNs often require a long simulation time to achieve higher per-

formance. Here, we study the influence of different simulation
lengths on the network performance.

As shown in the Figure 3, when our adjustments are not intro-
duced, when the simulation time is reduced, the test curve of the
network is not very smooth, that is, the network needs a long
simulation time to converge. As can be seen in Table 6, with
the introduction of the two adjustments, our training method still
achieves high accuracy while reducing the simulation time. The
low latency of our approach further lays the foundation for the
practical application of SNNs.

Limitations of the study

In this paper, through the analysis of the training of the BP-based
SNN, we find that neurons that do not generate spikes will still
participate in the update of network weights. Also, the error signals
along the temporal dimension cannot propagate across the spikes
due to the reset operation. By introducing the BPSA and BPTA
mechanisms, our network is more consistent with the brain in
terms of weight update, and the energy consumption and latency

Table 5. The energy-efficiency study of our model with baseline
on different datasets

EE = EAW
Dataset Accuracy (%) Firing rate Esnn
MNIST 99.58/99.42 0.082/0.183 35.1/15.7
N-MNIST 99.61/99.32 0.097/0.176 29.6/16.3
CIFAR10 92.33/89.49 0.108/0.214 26.6/13.4
DVS-Gesture 98.26/93.92 0.083/0.165 34.6/17.4
DVS-CIFAR10 77.76/71.40 0.097/0.177 29.5/16.2

Represented as baseline/our method.
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Figure 3. The test accuracy of different simulation lengths on DVS-Gesture dataset with our method and the baseline

of the SNN are greatly reduced. However, there is no independent
module inthe brain specially designed for the BP pathway. In future
work, we will explore more biologically plausible learning methods
to train SNNs with high performance and robustness.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Yi Zeng (yi.zeng@ia.ac.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

All original code has been deposited at https://github.com/Brain-Inspired-
Cognitive-Engine/BP-STA under https://doi.org/10.5281/zenodo.6489856
and is publicly available as of the date of publication.

Spiking-neuron model

Many spiking-neuron models with biological neural characteristics have been
proposed in recent years, and the LIF model is adopted in most common
neuron models in deep SNNs. The LIF neurons continuously accumulate the
membrane potential and emit spikes once they reach the threshold. We give
a detailed description of the LIF neuron models. As shown in Equation 2, the
membrane potential of the neuron changes dynamically with the input current.

/
_auj(t) _

—u |
=~ um AL

(Equation 2)

I;(t) denotes the input current, which is composed of input spikes. R is the mem-
brane resistance, and 7 = RC is the synaptic time constant. When the mem-
brane potential is greater than the threshold uy,, the neuron will spike and
be reset to Urser. Without loss of generality, we set the reset potential
Ureset = 0,C = 1.Tofacilitate the calculation and simulation, we convert Equa-
tion 2 into a discrete form with Euler method with dt = 1 so that we can get
1
AT

ullt + 1] — ujft] = (Equation 3)

The input //(t) can be obtained from the pre-synaptic spikes Z] T wiol~ ),

M, _+ is the number of neurons in the / — 1 layer, then we can get

ZVVIO/ 1

j=1

Ut +1] =

ojft +1] = g(ujft + 1) = ult+1) =0, if u>up (Equation 4)

A=1- }, and the function g is the threshold function. w/’.,. is the synaptic

weight from the /" layer from neuron j to neuron . o} [t] denotes the neuron j

spikes in ' layer at time t.
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Spatiotemporal characteristics of SNNs

The discontinuity of the spike firing function makes it challenging to apply the BP
directly to the training of SNNs. In recent years, surrogate gradient has been pro-
posed to replace the discontinuous gradient with a smooth gradient function to
enable the SNNs to conduct BP in the spatial and temporal domains. Here, we
use the mean average firing rates of the last layer to approximate the classifica-
tion label and train the network through the mean squared error (MSE):

-3l el

T denotes the simulation length, ys denotes the real labels, and the o; de-
notes the output at time t. By applying chain rule, we can obtain the gradient
with respect to weight:

(Equation 5)

aL ao t oul[t]
aw/ 6 w!
(Equation 6)
&ty (uilt))o' [t
t=1
i 00/ '[t] L oolft+1] )
oilt] = Zao’”[t] aolt] Taolt+1] ou] (Equation 7)

41[t] denotes the derivative with respect to o in the /" layer at time step t and can
be derived from the (/+ 1)"’ layer (spatial) and t + 1 time step (temporal).

As can be seen in Equation 6 and Figure 4, the traditional surrogate-gradient
method will calculate the gradient around the threshold, even if the spiking
neurons do not emit spikes in the forward process. This will cause a large num-
ber of neurons that do not emit spikes to participate in the parameter update,
increasing network’s energy consumption. Also, as can be seen in Figure 4, for
the neuron o/~ 7, it will participate in the weight update repeatedly according to
the chain rule, and the earlier spiking moment o/~ [T — 1] will have a larger in-
fluence on the weight update compared with oﬁ*‘ [T]. While in neurophysi-
ology, the farther away the spiking activity is from the current moment, the
smaller the effect.

For an SSN trained with BP, the temporal dependence mainly comes from
accumulating membrane potential over time. As a result, the backward pro-
cess for the temporal dimension can be written as

00j[t+1] _ dol[t+1] oul[t+1]
oullt]  — ault+1] ault]

(Equation 8)

Table 6. The test accuracy on DVS-Gesture dataset of different
simulation lengths of our method and the baseline

T=32 T=16 T=8 T=4
BPSA + BPTA 98.27 98.26 96.18 92.01
BPSA 96.53 97.56 94.44 89.58
Baseline 95.49 93.92 84.03 73.96
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Figure 4. The forward and backward process of spiking neural networks
The dotted lines of different colors indicate the impact on the network at different time steps. The earlier spiking node will have more influence on the parameter

update.

Since the spiking neurons will reset to the resting potential after reaching the
threshold, that is to say that u![t + 1] will have no relationship with u![t], and the
temporal dependence will no longer exist, as shown in Figure 5.

To tackle the problems mentioned above, we propose the BPSA in which
the neurons along with the hierarchical layers that emit spikes will participate
in the weight update. Also, we propose the BPTA to help the errors transmit to
the initial time step without being clipped.

BPSA

The membrane potential of spiking neurons changes as a process of informa-
tion accumulation. After the neurons have accumulated enough information,
they will send the information to the post-synaptic neurons in the form of
spikes. As a result, the binary spikes can be regarded as a normalization of

Membrane Potential

the information contained in the membrane potential. For the BP process, it
is more reasonable to only calculate the gradient of the neuron at the moment
of spiking to the membrane potential. We propose a BPSA to improve the BP-
based training SNNs. When the membrane potential does not reach the
threshold, we will clip the gradient of the spikes to the membrane potential
to avoid the problems of repeated updates at an earlier time, as in Figure 4.
When the membrane potential reaches the threshold, we normalize the mem-
brane potential and spread the information in spikes. Then, the derivative of the
spikes concerning the membrane potential can be expressed as

1
oojlt] _ a

0, otherwise

ojt] =1

(Equation 9)

Figure 5. The temporal backpropagation of
LIF neurons

The information can only propagate within a single-
spike period and cannot propagate cross spikes.

v

Spike
Time

v
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brane potential of different strengths on the parameter update. For a spike
excited by larger membrane potential, there will be a minor optimization
step for the model parameters in the BP process to ensure the stability of
the spikes. The spikes excited by the membrane potential near the spike
threshold uy, will have a more significant impact on the model parameters, al-
lowing the model to quickly push the membrane potential close to the
threshold away to obtain more stable spikes.

BPTA

In biological neurons, the spike that the neuron fires will affect the subse-
quent spikes of the neuron. When directly using the BP algorithm to optimize
the parameters of the SNNs, the gradient of the loss function to the neuron
output will only be propagated from the time the neuron was last excited to
the present and will not cross the spikes as shown in Equation 8 and Figure 5.
So, the influence between spikes will not be considered in the temporal
dimension. Then, we propose a BPTA cross the spikes. Considering that
the temporal dependence disappears during the BP process, we add the re-
sidual connection between spikes during the backward pathway, as shown
in Figure 6. The influence to control the error transfer from time step t+ 1
to t is controlled by the residual factor «. The temporal feedback process
can be written as

= 9t A1 — o) + a9 )]

(Equation 10)

As can be seen in Equation 10, when the neurons do not emit a spike at time
t,g'(ullt]) = 0, which is the same with the traditional BP algorithm. However,
when the neuron fires a spike attime t, then 1 — of[t] = 0, the temporal depen-
dence can be written as g'(ul[t +1])Aag’(u]t]). With the introduction of the
BPSAs and BPTAs, the influence of different spikes becomes more reason-
able, and the temporal residual backward pathway enables it to propagate er-
rors over spikes.
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