
1

FireFly v2: Advancing Hardware Support for
High-Performance Spiking Neural Network with a

Spatiotemporal FPGA Accelerator
Jindong Li , Guobin Shen , Dongcheng Zhao , Qian Zhang , Yi Zeng

Abstract—Spiking Neural Networks (SNNs) are expected to
be a promising alternative to Artificial Neural Networks (ANNs)
due to their strong biological interpretability and high energy
efficiency. Specialized SNN hardware offers clear advantages over
general-purpose devices in terms of power and performance.
However, there’s still room to advance hardware support for
state-of-the-art (SOTA) SNN algorithms and improve compu-
tation and memory efficiency. As a further step in supporting
high-performance SNNs on specialized hardware, we introduce
FireFly v2, an FPGA SNN accelerator that can address the
issue of non-spike operation in current SOTA SNN algorithms,
which presents an obstacle in the end-to-end deployment onto
existing SNN hardware. To more effectively align with the SNN
characteristics, we design a spatiotemporal dataflow that allows
four dimensions of parallelism and eliminates the need for
membrane potential storage, enabling on-the-fly spike processing
and spike generation. To further improve hardware acceleration
performance, we develop a high-performance spike computing
engine as a backend based on a systolic array operating at 500-
600MHz. To the best of our knowledge, FireFly v2 achieves the
highest clock frequency among all FPGA-based implementations.
Furthermore, it stands as the first SNN accelerator capable of
supporting non-spike operations, which are commonly used in
advanced SNN algorithms. FireFly v2 has doubled the throughput
and DSP efficiency when compared to our previous version of
FireFly and it exhibits ×1.33 the DSP efficiency and ×1.42 the
power efficiency compared to the current most advanced FPGA
accelerators.

Index Terms—Spiking Neural Networks, Field-programmable
gate array, Hardware Accelerator, Non-Spike Operation, Spa-
tiotemporal Dataflow

I. INTRODUCTION

Manuscript created 28 September 2023; revised 5 January 2024 and 8
March 2024; accepted 16 March 2024. This work was supported by the Chi-
nese Academy of Sciences Foundation Frontier Scientific Research Program
(ZDBS-LY- JSC013). (Corresponding authors: Qian Zhang; Yi Zeng.)

Jindong Li and Qian Zhang are with the School of Artificial Intelligence,
University of Chinese Academy of Sciences, Beijing 100049, China, and
also with the Brain-inspired Cognitive Intelligence Lab, Institute of Au-
tomation, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
lijindong2022@ia.ac.cn, q.zhang@ia.ac.cn).

Guobin Shen is with the School of Future Technology, University of
Chinese Academy of Sciences, Beijing 100049, China, and also with
the Brain-inspired Cognitive Intelligence Lab, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China (e-mail: shen-
guobin2021@ia.ac.cn).

Dongcheng Zhao is with the Brain-inspired Cognitive Intelligence Lab,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: zhaodongcheng2016@ia.ac.cn).

Yi Zeng is with the Brain-inspired Cognitive Intelligence Lab, Institute
of Automation, Chinese Academy of Sciences, Beijing 100190, China, and
University of Chinese Academy of Sciences, Beijing 100049, China, and
Center for Excellence in Brain Science and Intelligence Technology, Chinese
Academy of Sciences, Shanghai 200031, China (e-mail: yi.zeng@ia.ac.cn).

SPIKING neural networks (SNNs) are considered a promis-
ing alternative to artificial neural networks (ANNs) due

to their high biological plausibility, event-driven nature, and
low power consumption [1]. Recent advancements in SNN
algorithms have drawn inspiration from both biological evi-
dence and deep learning insights, narrowing the performance
gap with ANNs [2]. However, current neuromorphic hardware
[3] [4] cannot match the performance of ANN accelerator
counterparts and, worse still, cannot support state-of-the-art
SNN algorithms.

Ongoing research aimed at developing high-performance
SNN algorithms has made significant strides in narrowing
the benchmark accuracy gap between ANNs. However, it
also presents challenges for specialized SNN hardware due
to the introduction of hardware-unfriendly computation. Fig.1
shows four typical backbone structure of current SNN algo-
rithms, Conv represents the convolution layer, BN represents
the batchnormalization layer which can be fused into the
convolution layer after training, LIF represents the leaky-and-
fire neuron node. The blue block indicates the hardware-
friendly spike convolution and the red block indicates the
non-spike convolution not supported by existing specialized
SNN hardware. As shown in Fig.1A, current SNN algorithms
typically use direct input encoding [5] with analog pixel values
applied to the initial convolutional layer, followed by spiking
neurons for end-to-end backpropagation, improved benchmark
accuracy and reduced time steps. However, the direct encod-
ing convolutional layer poses compatibility challenges with
existing specialized SNN hardware designed for spike-based
computation. As shown in Fig.1B, current deep SNN models
incorporate a residual connection by applying spike-element-
wise summation between the residual path and the shortcut
path [6]. However, the sum of spikes operations introduce non-
spike operation in the next convolutional layer. Furthermore,
the commonly employed Average Pooling function in SNN
models introduces fractional-spike convolution as shown in
Fig.1C, which is not supported by current SNN hardware
equipped with spike-based computing engines. Existing spe-
cialized SNN hardware cannot support these non-spike oper-
ation, as shown in Table.I.

Advancements in current specialized SNN hardware con-
tinue to pursue low power and high performance through archi-
tectural designs. However, there is still room for improvement
in terms of spatiotemporal dataflow, parallelism scheme and
computing engine design, particularly in field-programmable
gate array (FPGA) implementations. Current FPGA SNN

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4009-916X
https://orcid.org/0000-0002-4069-2107
https://orcid.org/0000-0002-0593-8650
https://orcid.org/0000-0001-5314-4233
https://orcid.org/0000-0002-9595-9091

2

Conv
BN
LIF

Conv
BN
LIF

Conv
BN
LIF

Conv
BN
LIF

Conv
BN
LIF

Conv
BN
LIF

Maxpool

Conv
BN
LIF

Avgpool
3 78 94 251 7

2 1 0 2 0 0
0 0.25 0.5 0.75 1

Conv
BN
LIF

A) B) C) D)

0 1 0 0 1 0

1 1 0 1 0 0

0 0 1 1 0 1
1 0 1 1 0 1

1 0 0 1 0 0

1 1 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 1

3 1 0 3 0 1

1 1 0 1 0 0

1 0 0 1 0 1

Conv

Conv

Full-spike convolution supported by specialized SNN hardware

Non-spike convolution not supported by specialized SNN hardware

Fig. 1. A) An SNN backbone with full-spike operation. B) The non-spike
convoluton in the direct coding layer. C) The sum of spikes in SEW-ResNet
introduces non-spike convolution. D) The average pooling layer introduces
fractional-spike convolution.

TABLE I
COMPARISION OVER OTHER SNN ACCELERATORS

SpinalFlow SATO DeepFire2 FireFly FireFly v2

Device 28nm
ASIC

28nm
ASIC

Cloud
FPGA

Edge
FPGA

Edge
FPGA

Encode Temp.1 Temp.1 / Direct2 Direct2

ResNet Yes3 / No No Yes4

Avgpool / / No No Yes
Sparse Yes Yes No No No

1 Temporal encoding.
2 Although FireFly and FireFly v2 adopts direct encoding in our experi-

ments, our hardware does not tightly coupled to the encoding scheme,
while SpinalFlow and SATO only supports temporal encoded SNNs.

3 SpinalFlow supports the conversion based ResNet. Addition happens
before the LIF neuron. This ResNet variant does not achieve SOTA
performance.

4 We support the advanced SEW ResNet which achieves high accuracy.
5 The slash ”/” represents not mentioned.

accelerators either have no parallelism in the temporal domain
[7] or sacrifice spatial parallelism for temporal parallelism
[8]. Moreover, systolic-array-based SNN accelerators still have
naive implementations of spiking computing engines [9] that
run at low frequencies with limited parallelism. Our previous
version of FireFly [10] employed a high-performance systolic
array running at 300MHz with DSP optimizations, but it still
had limited parallelism dimensions and ran at a frequency
far from the extreme frequency on Xilinx Ultrascale FPGA.
FireFly adopted a weight-stationary dataflow and designed a
synaptic weight delivery hierarchy to enable efficient weight
data reuse, but it still required large on-chip membrane poten-
tial storage and did not support temporal parallelism.

As agile development methodologies for customized hard-
ware evolve, the gap between the development cycle of
customized hardware and the iteration speed of algorithms is
gradually closing. We recognize the importance of aligning
research on SNN hardware accelerators with the advancements
in SNN algorithms. In this work, we introduce FireFly v2
as another step to advance specialized hardware support for
SOTA SNN algorithms while further enhancing hardware per-
formance. FireFly v2 brings several significant improvements:

1) FireFly v2 is a general FPGA SNN accelerator that can

support A) non-spike operations in direct input encoding [5]
and spike-element-wise ResNet [6]. B) multiple neurodynam-
ics, such as IF [11], LIF [12] and RMP [13] neurons. C)
arbitrary convolutional configurations such as different kernel
sizes, strides, and pads. These integrations cover many recent
SNN advancements.

2) FireFly v2 utilizes a spatiotemporal dataflow scheme for
SNNs that enables four dimensions of parallelism. FireFly v2
not only process firing neurons on-the-fly but also generate
spikes on-the-fly, eliminating the need for expensive mem-
brane potential storage thus greatly reducing on-chip memory
consumption and inference latency compared to the serial
processing of spikes at each time step.

3) FireFly v2 integrates a high-performance spiking comput-
ing engine with a systolic array that supports four dimensions
of parallelism and runs at 500-600MHz on different FPGA de-
vices, which is closer to the extreme clock frequency of Xilinx
Ultrascale FPGA and thus achieves ×1.67 − ×2 throughput
and DSP efficiency compared to the original FireFly [10].
Compared with the existing most advanced SNN accelerator
DeepFire2, FireFly v2 achieves ×1.33 the DSP efficiency and
×1.42 power efficiency on a much smaller FPGA edge device.

The remaining sections of the paper are organized as
follows: Section II presents related work that shares motivation
with our research. Section III introduces how we address
the non-spike operation challenge. Section IV describes our
proposed spatiotemporal dataflow. Section V outlines the hard-
ware architecture of FireFly v2, including the design of the
500-600MHz spike computing engine. Section VI provides
details on experiments regarding hardware specifications and
benchmark evaluations. Finally, Section VII concludes the
paper.

II. RELATED WORK

Rather than attempting to cover all neuromorphic hardware
or SNN accelerators relevant to our research, we will focus on
studies that share a similar motivation to our own and explore
potential improvements to these works.

A. Supporting Versatile SNNs with a Single Hardware Engine

Using a single computation engine has emerged as a favored
design option for FPGA-based neural network accelerators,
allowing for the deployment of a variety of models without re-
quiring fabric reconfiguration. While ANN variants primarily
differ in convolutional configurations and structural designs,
SNN variants are much more varied and complex as they also
differ in input encoding schemes and neuron types. However,
only a limited amount of research has explored the design of
a unified SNN accelerator. Cerebon [7] designed a reconfig-
urable compute engine compatible with a variety of spiking
convolutional layers including depthwise and pointwise con-
volutions. Ye et al. [14] designed a neuromorphic platform
that supports SNNs with MLP and CNN Topologies. Zhang
et al. [15] proposed an architecture that supports multiple
coding schemes including rate coding and temporal coding.
However, these studies combined only address a small fraction

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

3

of the many SNN variants and did not cover the recent SNN
advancements.

In this paper, our objective is to narrow the gap be-
tween modern SNN algorithms and hardware accelerators
by supporting general non-spike operations. Additionally, our
approach supports various convolutional configurations in a
dynamically reconfigurable fashion and offers versatility in
neuron types through static reconfiguration.

B. Dataflow and Parallelism Schemes for SNNs

Existing SNN accelerators with dataflow and parallelism
schemes exploration have limited parallelism dimensions. Lee
et al. [8] proposed a Psum-friendly dataflow and a 2D sys-
tolic array that enables spatiotemporal parallelism. However,
they only support output channel parallelism in the spatial
domain, which sacrifices spatial parallelism for temporal par-
allelism. Spinalflow [16] presented a specialized architecture
and dataflow for SNNs that exclusively supports temporal
coding, where neurons only fire once in all time steps. It sorts
the synaptic input spikes chronologically and can handle a
maximum of 2048 non-zero spikes within the receptive field,
processing spikes sequentially. It updates 128 neurons from
different channels one spike packet at a time, which means
that it only supports output channel parallelism. SpinalFlow
achieved a performance of 70GOP/s/mm2, 519× higher
than TrueNorth. SpinalFlow did not provide direct inference
latency but provided normalized inference latency over vanilla
Spiking Eyeriss. SpinalFlow exhibited 5.6× speed up over
vanilla Spiking Eyeriss when the sparsity level is up to
90 percent. SATO [17] expands the neuron-level parallelism
to additional temporal-level parallelism by parallelizing the
integration of received spikes at each time step. SATO also
achieved impressive sparsity acceleration and supported work-
load balancing. However, similar to Spinalflow, SATO only
supports temporal-coded SNNs.

In this paper, we propose a spatiotemporal dataflow with
four dimensions of parallelism, namely input channel, output
channel, pixel-level and time step parallelism.

C. FPGA Accelerator with DSP Optimization Techniques

DSP optimization techniques are commonly used in FPGA-
based computational-intensive accelerator designs. Here, we
focus on DSP48E2 optimization techniques in Xilinx Ultra-
scale FPGAs. Previous ANN accelerators have demonstrated
the ability to fully utilize the capabilities that DSP slices
provide. Xilinx’s white paper [18] documents that the 27×18
multiplier in DSP48E2 can be split into two 8× 8 multipliers
with a shared input operand. Vitis AI has adopted the DSP
double data clock technique in its DPU design. This allows
the systolic array to run at double the clock frequency while
the rest of the system runs at the base frequency, achieving
high inference performance for FPGA platforms.

Nonetheless, these optimization techniques are tailored for
multiplication-intensive ANN accelerator designs and may not
be directly applicable to the SNN computation workload. The
effectiveness of DSP48E2 in accelerating SNN computation
is not immediately apparent. DeepFire [19] was the first

research to utilize the SIMD feature of DSP48E2s in the SNN
accelerator domain. They implemented the AND operations
between spikes and synaptic weights using the LUT fabric
and used one DSP48E2 and three fabric adders to build an
8-input synaptic currents integration circuit. DeepFire2 [20]
recognized the inefficiency of implementing a 2-input AND
operation using a 6-input LUT and avoided AND operations by
considering the spike as the synchronous reset of the flip-flop
register. This further improved the system frequency but was
still not the most ideal implementation. Our previous version
of FireFly [10] proposed the most efficient implementation of
synaptic operation with a fabric-free approach. We utilized a
wide-bus multiplexer, SIMD adder, and dedicated cascade path
inside the DSP48E2 to construct a 16 × 4 synaptic crossbar
using eight cascaded DSP48E2 slices. This cascaded chain was
used in FireFly to build a large systolic-array-based spiking
computing engine. However, fabric circuits of other system
components limit the frequency in a single clock system.

In this paper, we continue to adopt the fabric-free implemen-
tation of synaptic operation proposed in our previous version
of FireFly but with a different dataflow. We further incorporate
DSP double data rate techniques adopted by the Vitis AI DPU.
As a result, FireFly v2 achieves significant speed up compared
to its previous version.

III. ADDRESSING THE NON-SPIKE OPERATION
CHALLENGE

In recent SNN advancements, the inclusion of non-spike
operations has been proven to be a challenging task for
specialized SNN hardware. Without loss of generality, we
consider three typical non-spike scenarios: pixel operation in
direct encoding, multi-bit spike operation in SEW ResNet, and
fractional spike operation introduced by average pooling.

Instead of designing separate hardware for these different
non-spike operation cases, FireFly v2 draws inspiration from
the field of bit-serial accelerators to address the non-spike
operation challenge. In bit-serial accelerators [21], operands
are divided into smaller bits, computations are carried out
using low-bit arithmetic logic and the partial sums are shifted
and merged to reconstruct full-precision results. In FireFly v2,
we utilize a single spike computing engine to perform spike-
weight multiplications, decompose the non-spike operands
and flexibly merge the partial sums to support non-spike
operations. We focus on the three aforementioned common
scenarios of non-spike operations.

a) Pixel Convolution in Direct Encoding Layer: In the
case of 8-bit pixel convolution using direct input encoding, we
treat the 8-bit pixel as spikes occurring over 8 equivalent time
steps. We then perform spike-weight convolution for each time
step and combine the 8 partial sums using shift-add logic.

b) Multi-bit Spike Convolution in SEW-ResNet: In a
certain SEW ResNet layer, a B-bit spike in T simulation time
steps can be deconstructed into a sequence of binary spikes
spanning B × T equivalent time steps. Partial sums are then
shifted and merged B in a group to reconstruct the actual
partial sums of T actual time steps. As the sum of spikes
accumulates, SEW-ResNet will produce log(N +1)-bit spikes

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

4

B=3 B=2 B=1 B=0

1 9 6 7

12 2 5 11

-4

7

1 0 0 1

1 0 1 1

0 1 0 1

0 0 1 0

1 1 0 0

7 0 7 7

0 7 0 7

0 0 7 0

7 7 0 0

77

35

14

84

11

5

2

12

7

6

9

1

0 1 1 1

0 1 1 0

1 0 0 1

0 0 0 1

0 -4 -4 -4

0 -4 -4 0

0 0 0 -4

0 0 0 -4

-28

-24

-36

-4
1

0

0

1

49

11

-22

80

B=3 B=2 B=1 B=0

T=0

T=1

T=2

T=3

T=0

T=1

T=2

T=3

Threshold=20
Multi-Bit

Spikes

Bit Decomposition Partial Sums Merging
Spike/Bit-

Weight GeMM

49 11 -22 80

Fig. 2. Addressing the computation of multi-bit spikes through bit decompo-
sition, bit-weighted GeMM, and partial sums merging. The figure illustrates
a case of 4-bit spikes computation.

after N spike-element-wise residual connections. With a 4-
bit spike representation, this accommodates up to 16 residual
connections, aligning with the SEW-ResNet34 architecture.

c) Fractional Spike Convolution introduced by Average-
Pooling: The fractional values can be left-shifted to integers,
treated as multi-bit spikes, and the partial sums can be right-
shifted by the same amount to obtain the accurate partial sum.
For example, consider a 2× 2 average pooling operation that
yields values such as 0, 0.25, 0.5, 0.75, 1. These values can be
left-shifted by 2 positions, resulting in 0, 1, 2, 3, 4, and treated
as 3-bit spikes.

Fig. 2 illustrates the computation flow for 4-bit spikes with
T = 4. In this scenario, the spiking neuron receives two 4-
bit spike inputs from synapses and generates binary spikes.
The 4-bit spike sequence is initially decomposed bit by bit,
creating a 4 × 4 bit matrix. Each bit is then multiplied with
the corresponding synaptic weight, and the partial sums of
each bit are further scaled by factors of 8, 4, 2, and 1 (or left-
shifted by 3, 2, 1, and 0), respectively. These scaled values are
then summed together, resulting in the actual synaptic current
at each time step. Subsequently, these synaptic currents are
accumulated and reset when they reach a certain threshold,
leading to the generation of spikes according to specific
neurodynamic behaviors.

Although the bit-serial decomposition of the multi-bit spikes
can fully support the non-spike operations existing in state-
of-the-art SNN algorithms without any accuracy drop, it
inevitably leads to an increased computational workload. After
three cascaded residual connections in SEW ResNet, the
maximum value of spikes reaches 4, necessitating a 3-bit
representation. Similarly, spikes with fractional values yielded
by the most commonly seen 2 × 2 average pooling also
need a minimum 3-bit representation. To prevent the potential
escalation of spike bit-width as the SNN network increases in
depth, we introduce a saturate-or-shift approach to confine the
bit-width of spikes within 2 bits. In our approach, an analysis
of data distribution will be conducted in advance on a batch of

TABLE II
NOTATIONS

Notation Description
T Time Step

Ho,Wo Size of Output Feature Map
Hi,Wi Size of Input Feature Map
Kh,Kw Kernel Size
Co, Ci Input Output Channels
M Output Channel Parallelism
V Input Channel Parallelism
N Pixel Parallelism
S Time Step Parallelism

representative samples in software, similar to the post-training
quantization. This analysis will guide the decision of whether
to saturate the spike value exceeding 4 to 3, or perform a
right shift operation on all spike values, resulting in the range
of 0, 1, 2, accompanied by a corresponding left shift of the
partial sum to recover the results. This method ensures that the
bit-width of spikes remains confined within 2 bits, effectively
mitigating the escalation of the computational workload. In
our analysis, we empirically find that the same saturation
configuration for all non-spike layer could yield negligible
accuracy drop. Nevertheless, this saturation-or-shift hardware
function is reserved for more fine-grained layer-wise analysis.

IV. OPTIMIZED SPATIOTEMPORAL DATAFLOW

Although the dataflow of ANNs has undergone extensive
study, achieving the balance between the spatial and temporal
dimensions in the dataflow of SNNs proves to be a challenging
task. In FireFly v2, we propose a spatiotemporal dataflow that
builds upon the output stationary dataflow while incorporating
variable tiling and parallelism schemes designed specifically
for SNNs. In contrast to the previous version of FireFly [10],
our approach significantly reduces memory consumption and
enables a higher degree of parallelism and reconfigurability.

We focus on the dataflow of a single convolution layer.
Although FireFly v2 does support non-spike convolution, we
focus on the 1-bit spike case in this section to simplify the
dataflow illustration. We first explain the variables used in
this paper, which are also listed in Table.II. T represents
the total number of time steps. Ho and Wo represent the
height and width of the output feature map, respectively,
while Hi and Wi represent the height and width of the input
feature map, respectively. Kh and Kw denote the height and
width of the kernel, while Ci and Co represent the input and
output channels, respectively. We leverage four dimensions of
parallelism and perform variable tiling on the output channel
Co, input channel Ci, the width of the output feature map
Wo, and equivalent time step Te. We denote the output
channel parallelism as M , input channel parallelism as V ,
pixel parallelism as N and time step parallelism as S.

Similar to convolution in ANNs, convolution in SNNs can
be expressed using nested for-loops, accompanied by an addi-
tional time step loop [16] [17]. The permutation of loop order
does not alter the computation results, yet it does influence
data locality and data reuse opportunities [22]. To simplify
the illustration, we employ an ordered tuple to represent the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

5

Spatial Loops

Temporal Loop

Neuron Loops

Neuron Loops

Spatial Loops

Neuron Loops

Spatial Loops

Temporal Loop

Unrolled

Neuron Loops

Spatial Loops

Temporal Loop

Unrolled

Spatial Loops
Unrolled

A) Dataflow of FireFly B) FireFly: Tensor Shape and Buffer Size C) Dataflow of FireFly v2 D) FireFly v2: Tensor Shape and Buffer Size

Notation Shape/Size

Notation Shape/Size

Fig. 3. Comparison of the dataflow in FireFly v2 to its previous version FireFly. A) FireFly’s dataflow design. B) Mentioned tensor shape or buffer size in
FireFly’s dataflow. C) FireFly v2’s dataflow design. D) Mentioned tensor shape or buffer size in FireFly v2’s dataflow.

permutation of folded or unrolled for-loops, with the unrolled
for-loops enclosed in square brackets, denoted as {}. The
fully folded computation flow of an SNN convolution layer
can be represented as (T,Co, Ho,Wo, Ci,Kh,Kw). Here, we
employ a similar loop notation as presented in SATO [17].
The dimensions (Co, Ho,Wo) correspond to the neuron loops,
representing independent neurons within a convolutional layer,
indicated by the color blue in Fig.3. On the other hand, the
dimensions (Ci,Kh,Wh) represent the spatial loops, denoting
spatially fan-in neurons and are marked with the color orange.

a) Inefficient Dataflow in FireFly: In the previous
version of FireFly, we parallelled the computation for
both the input-output channel dimension and the ker-
nel dimension. This resulted in a dataflow represented as
(Co

M , T, Ci

V , Ho,Wo, {M,Kh,Kw, V }), as depicted in Fig. 3A.
The spike computing engine within FireFly conducts matrix-
vector multiplication between the KhKw×V binary spikes and
the M×KhKw×V synaptic weight matrix, yielding a 1×M
partial sum. Subsequently, when the last fragment of spikes
from the tiled input channel passes through, the neurodynamics
calculation is performed to generate a 1 × M output spike
vector. To achieve weight data reuse across T time steps, an
on-chip cache is necessary to store M ×KhKw×Ci synaptic
weights. To avoid the need for off-chip storage and loading
of multi-bit membrane potential, it becomes imperative to
temporarily store M ×HoWo membrane potential values on-
chip. However, this poses potential issues, particularly when
dealing with large feature maps. The tensor shapes or buffer
sizes in FireFly’s architecture are denoted in Fig.3B.

b) Spatiotemporal Dataflow in FireFly v2: In FireFly v2,
we tackle the following limitations in the FireFly architecture’s
dataflow: 1) The need for large on-chip storage of membrane
potential. 2)The constraint of a fixed convolution configuration
resulting from parallelism on the kernel dimension. 3) The
absence of parallelism at both the temporal and pixel levels.
The adopted spatiotemporal dataflow scheme is depicted in
Fig.3C. To address the long data dependencies spanning
Co×Ho×Wo neurons across T time steps, we’ve rearranged
the loops by placing the temporal loop after the neuron loops
and before the spatial loops. We have also tiled on both the
width of the output feature map Wo, and the time step T ,
to introduce two additional dimensions of parallelism. After
the reordering and tiling, the resulting dataflow takes the
form of (Co

M , Ho,
Wo

N , T
S ,Kh,Kw,

Ci

V , {M,V,N, S}), shown

in Fig.3C. The spike computing engine performs matrix mul-
tiplication between the V ×N×S binary spike matrix and the
M×V weight matrix, yielding a M×N×S partial sum matrix.
After accumulating the fan-in pre-synaptic currents across
the Kh,Kw,

Ci

V spatial loops, neurodynamic calculations are
carried out by incorporating the M×N×S partial sums along
with the residual M ×N membrane potential VPre from the
previous time step batch. This process results in the generation
of M × V × S output spikes and the next residual membrane
potentials VNext. The aforementioned tensor shapes or buffer
sizes in FireFly v2’s architecture are denoted in Fig.3D.

This spatiotemporal dataflow framework enables four di-
mensions of parallelism including output channel parallelism,
input channel parallelism, pixel-level parallelism, and time
step parallelism. Through the separation of the parallelism
scheme from the kernel dimension, we enable support for vari-
ous convolution configurations, accommodating differences in
kernel size and stride. By positioning the temporal loop as the
innermost loop before the spatial loops, the necessity to cache
only M × N residual membrane potentials on-chip becomes
inconsequential. Without the explicit storage of the membrane
potentials, spikes are not only processed but also generated on-
the-fly. The only additional overhead is the need for increased
storage space for input spikes. Given that input spikes require
much less memory storage compared to membrane potentials,
this added requirement is of minimal concern.

V. HARDWARE ARCHITECTURE

The hardware architecture of FireFly v2 is illustrated in
Fig.4. Fig.4A provides an overview of FireFly v2’s system
block diagram. In the customized PL system of the Zynq
Ultrascale SoC, a clock wizard IP is instantiated to generate
two synchronous clocks, with one clock operating at twice the
frequency of the other. One master M-AXI-HPM port of the
Zynq Ultrascale SoC is utilized for command configuration
status control, directly connected to the FireFly v2 IP. Two
128-bit S-AXI-HP ports are enabled and are connected to
two read-only AXI DataMovers respectively, facilitating high-
speed PS to PL data transfer. Additionally, another 128-bit S-
AXI-HP port is employed and connected to a write-only AXI
DataMover, enabling PL to PS data transfer. The FireFly v2
IP interfaces with all three AXI DataMovers. Please note that
we have not utilized all of the S-AXI-HP ports available on

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

6

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

ifm
 sp

ikes ->
 slo

w
2

fast gearb
o

x

synaptic weights -> slow2fast gearbox
P

artial Su
m

Conv
Padding

Coalesce
Padding

Im2col
With T

FIFO

FIFO
Stream
Adapter

Streaming
Partial Reuse FIFO

Mux-Gather
Shift-Align
Fast2Slow

Neuro
Dynamic

Pooling

SEW Res
Connect

Weight
T

h
resh

o
ld

B
ias

R
es Sp

ik
es

In
 S

p
ik

es

SpikeAcc

Out Spikes/ SpikeCnt

PsumProc

P
su

m
 O

u
t

Status
Reg

Cmd
Reg

ConfigMonitor

R-AXI
DataMover

R-AXI
DataMover

W-AXI
DataMover

Zynq
Ultrascale

SoC

DDR4

Zynq
Ultrascale

SoC

DDR4

FireFly v2
IP

M_HPM

clk

clk x2
Clock

Wizard

AXI Full AXI Stream ClockAXI Full AXI Stream Clock

R-AXI
DataMover

R-AXI
DataMover

W-AXI
DataMover

Zynq
Ultrascale

SoC

DDR4

FireFly v2
IP

M_HPM

clk

clk x2
Clock

Wizard

AXI Full AXI Stream Clock

To Threshold

To Bias

To Weight

To In Spikes

To Res Spikes

From Psum

From Out Spikes

CmdGen-
DataCache

CmdGen-
DataCache

A) Block Design

B) Data Loader and Data Saver C) System Components of FireFly v2

S_HP

S_HP

S_HP

ArbiterArbiter
CmdGen-

DataCache

Stream
Adapter

Fig. 4. Hardware Architecture of FireFly v2. A) The system block design of FireFly v2. B) The efficient data loader and data saver of FireFly v2. C) The
key system components of FireFly v2. The blue blocks represent a series of input spike preprocessing modules, whereas the orange blocks signify a sequence
of synaptic weight preprocessing modules. The purple blocks represent the post-processing modules for the partial sums and output spikes.

the Zynq SoC, and the peak memory bandwidth of the three
instantiated S-AXI-HP ports is far from the Zynq Ultrascale
device’s limit of 19.2 GB/s. We constrain ourselves in such
setup to reduce power consumption and ease the routing
complexity of the system design, while ensuring the required
bandwidth is met.

We have designed an efficient data loader and data saver
module to fully harness the bandwidth capacity of the three
S-AXI-HP ports, as illustrated in Fig.4B. We have instantiated
two CmdGen-DataCache Units to generate Address-Length
data transfer commands for input or residual spikes, as well
as parameters such as weights, bias, and thresholds, respec-
tively. Additionally, another CmdGen-DataCache is dedicated
to handling output spikes or partial sums transfer, utilizing the
write-only AXI DataMover interface. Given the availability
of two read-only AXI DataMover interfaces, the simplest
approach would be to assign each CmdGen-DataCache unit
to occupy one AXI DataMover interface. However, in various
convolutional configurations, the required data bandwidth for
input spikes and synaptic weights differs. For instance, in a
1×1 convolution, the synaptic weights demand relatively less
bandwidth, while input spikes require more. Conversely, in
a 3 × 3 convolution with small 4 × 4 images, the synaptic
weights require greater bandwidth, while the input spikes
need less. To efficiently utilize the total available bandwidth
and prevent one AXI DataMover from being fully utilized
while the other remains idle, we have introduced an arbiter.
This arbiter arbitrates incoming commands from the CmdGen-
DataCache units and the data flow from the AXI DataMover
interfaces, enabling flexible bandwidth balancing for varying
spikes and weight workloads.

The key system components of FireFly v2 are arranged as

illustrated in Fig. 4C. The blue blocks in Fig.4C represent
a series of input spike preprocessing modules, whereas the
orange blocks signify a sequence of synaptic weight pre-
processing modules. The purple blocks represent the post-
processing modules for the partial sums and output spikes. The
input spike stream and synaptic weight stream pass through the
preprocessing modules before reaching the spike computing
engine. Subsequently, the spike computing engine generates a
partial sums stream, which is then further processed by the
post-processing modules to produce output spikes. We will
provide a brief overview of these key components below.

a) Input Data Preprocessing: The input spike prepro-
cessing modules initially buffer and adjust the input spike
stream’s stream width via a FIFO and stream width adapter.
Subsequently, two sub-modules handle stream padding. One
handles zero-padding based on the current convolution
padding configurations, while the other focuses on memory
coalescing to prevent bank conflicts. After padding, the data
stream enters the im2col unit sequentially but is then read
out in a strided fashion to perform the im2col transformation.
The im2col unit comprises N memory banks, and a strided
address generator generates N conflict-free addresses for these
banks to read the spike data. An N -port crossbar is responsible
for routing the data output from the memory banks to their
respective ports, thereby delivering the data stream to the
spike computing engine. The input weight stream undergoes
a similar buffering and width adjustment procedure and then
is pushed to the partial reuse FIFO, a component introduced
in our prior version of FireFly [10].

b) Clock Crossing in the Computing Engine: The spike
computing engine joins the spike stream from the im2col
unit with the weight stream from the partial reuse FIFO and

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

7

sends them to the fast clock region. The spike computing
engine consists of two slow-to-fast gearboxes, functioning as
parallel-to-serial converters. These gearboxes reduce the data
elements by half while doubling the clock rate, maintaining
the data bandwidth. The PEs(processing elements) of the spike
computing engine operate at the fast clock region, performing
matrix multiplications between the V × N × S spike stream
and the M × V weight stream and generating M × N × S
partial sum every Kh×Kw × Ci

V cycles. The partial sums are
then gathered, aligned and sent back to the slow clock region.

c) Partial Sums Postprocessing: The post-processing
modules first flexibly process the partial sums, dealing with
spike and non-spike cases, and then generate spikes through
the neurodynamic unit. The following pooling unit performs
optional Maxpooling and AvgPooling or just bypasses the
spike stream if pooling is not needed. The residual connection
module of the FireFly v2 performs the optional spike-element-
wise residual connection between the shortcut spikes from
the data loader and the calculated spike stream. The spike
accumulation module optionally counts spikes from the spike
stream to record firing rates, a common operation in the last
classification layer in SNN models. The output spike stream
flows back to the external memory map through the data saver
and serves as the input spike stream for the subsequent layer.

In the following subsections, we will first fully elaborate
on the design of the spike computing engine. Next, we
will provide thorough details of how the spike computing
engine and the partial sum merging unit cooperate to perform
non-spike operations, which is essential in supporting direct
encoding and multi-bit spike convolution. Additionally, we
will delve into the two-phase design of the neurodynamics unit
which can generate spikes across multiple time steps. Lastly,
we will present the residual connection unit that supports
spike-element-wise functions in various cases.

A. Spatiotemporal Spiking Computing Engine

The spike computing engine acts as the core of FireFly
v2 since it is responsible for the heavy computing workload.
The key aspect of the spiking computing engine lies in its
operation at twice the frequency, detached from the low-speed
fabric, while supporting spatial and temporal parallelism. We
adopt the systolic architecture same as FireFly [10], shown
in Fig.5A, but with several distinctions: 1) FireFly employs
a weight-stationary systolic array, whereas FireFly v2 imple-
ments an output-stationary systolic array. This choice is better
aligned with our spatiotemporal dataflow requirements. 2) The
systolic array in FireFly enables spatial parallelism across
input channels, kernel sizes, and output channel dimensions.
However, the parallelism in the kernel dimension imposes
constraints on the convolution scheme, as FireFly exclusively
supports 3× 3 convolutions. In contrast, FireFly v2 leverages
spatiotemporal parallelism in input channels, output channels,
pixel level, and the time step dimension. We support various
kinds of convolution configurations enabled by the flexible
im2col unit. 3) In FireFly, the systolic array operates at a
frequency of 300MHz, identical to the overall system clock
frequency. FireFly v2 successfully decouples the slower fabric

2 64 48

32

2
56

D
SP

48

D
SP

48
D

SP
48

D
SP

48
D

SP
48

D
SP

48
D

SP
48

D
SP

48
D

SP
48

D
SP

48

D
SP

48

D
SP

48

D
SP

48

D
SP

48

D
SP

48

D
SP

48

DSP48DSP48 Mux-Add Mux-Acc

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

PEPE
sum

PE
sum

32

32

32

32

256

slo
w

 to
 fa

st

256256256

B) FireFly v2: Output-Stationary
Systolic Array with Spatial-Temporal Parallelism

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

PEPE
weight

PE
weight

F
la

tte
n

e
d

 S
p

ik
e

s

Psum-Vmem Buffer w

w

w

w

D
S

P
4

8
D

SP
48

D
SP

48
D

SP
48 2

64

48

48

A) FireFly: Weight-Stationary
Systolic Array with Spatial Parallelism Only

slow to fast

Fig. 5. Comparision of the spike computing engine in FireFly v2 to its
previous version of FireFly. A) Spike computing engine in FireFly supporting
only spatial parallelism B) Spatiotemporal spike computing engine in FireFly
v2.

TABLE III
THE SIZE OF THE SYSTOLIC ARRAY AND THE PE

Notation Description Determined by
SAh Systolic Array Height M/4
SAw Systolic Array Width N
PEh PE Height V/4
PEw PE Width S

logic from the faster DSP unit. This method enables the spike
computing engine to operate at 500-600MHz, doubling its
performance capabilities compared to FireFly.

Designing a high-performance systolic array is non-trivial.
To bridge the gap between the operating frequency of
DSP48E2 and its theoretical extreme frequency, we adopt the
DSP double data rate technique as the Vitis AI DPU. We
follow three key principles: First, the circuits in the doubled-
frequency domain should be well-decoupled from the circuits
in the low-frequency domain. Second, we avoid the use of
LUTs in the doubled frequency domain, and instead, only
use DSP48E2 and flip-flops. Third, we avoid high-fanout nets
and instead use simple and local connections between circuit
components. This helps to minimize net delays and reduce
congestion.

Before sending the spike sub tensor and weight sub tensor
to the spiking computing engine, a slow-to-fast converter, or
the gearbox, is utilized to facilitate communication between
circuits operating at different frequencies. This gearbox, which

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

8

operates at twice the frequency of the low-frequency domain,
essentially functions as a multiplexer, selecting the data being
transmitted from the low-frequency domain. The data being
transmitted from the low-frequency domain has twice the
data elements, but the data being transmitted to the doubled-
frequency domain has twice the clock rate. As a result, the
bandwidth at each side of the gearbox remains the same.

The spiking computing array is organized as a systolic array,
with processing elements (PEs) arranged in a 2D fashion.
To simplify the depiction, Fig.5B only illustrates a systolic
array with 4× 4 PEs. The array employs an output stationary
dataflow, with weight inputs flowing vertically from top to
bottom and spike inputs flowing horizontally from left to right.
Partial sums are stored in each PE and are collected once the
accumulation process is complete. Each processing element
(PE) comprises several columns of DSP48E2s. To simplify the
illustration, Fig.5B only depicts a single PE with four columns
of DSP48E2s, where each column contains four DSP48E2s
cascaded in a chain. Similar to the previous version of FireFly
[10], a single DSP48E2 slice functions as a 2 × 4 synaptic
crossbar, receiving two 1-bit spike inputs and eight 8-bit
weight inputs. The dedicated cascaded path of the DSP48E2
in the same column behaves like dendrites, integrating the
synaptic current through the DSP48E2 adder chain. Each
column of the processing element produces four 12-bit partial
sums, utilizing the single instruction, multiple data (SIMD)
feature of DSP48E2. Within the same PE, DSP48E2s on the
same row share the same weight inputs, while each DSP48E2
has its own spike inputs. In the illustrated example of a single
PE with 4 × 4 DSP48E2s, it receives 4 × 8 × 8 = 256-bit
weight inputs and 4× 4× 4 = 32-bit spike inputs, generating
4×4×12 = 192-bit partial sums. The weights and spikes are
staged and then fed to the adjacent PEs, and the partial sums
are collected after the accumulation process is completed.

The parallelism factors M,V,N, S play a vital role in
determining the dimensions of the systolic array. Specifically,
Table.III outlines the relationship between these factors and
the corresponding dimensions of the systolic array and PEs.
The height of the systolic array SAh is determined by M

4 ,
where each column of DSP48E2 in one PE can compute 4
channels. The width of the systolic array SAw is directly equal
to N . The height of the PE PEh is determined by V

4 due
to the fact that the computing engine operates at a doubled
frequency, and each DSP48E2 in one PE can integrate two
synaptic currents. The width of the PE is determined by S.
It’s worth noting that within a single Processing Element (PE),
synaptic weights are broadcast to S columns of DSP48E2
units. A critical consideration here is the choice of S, where a
larger value would lead to a larger fan-out for synaptic weights,
potentially failing step-up requirements. Conversely, opting for
a smaller value of S would elevate the consumption of flip-
flops. Based on experimental insights, we have determined the
optimal value for S to be 4. This empirical setting strikes a
balance between managing fan-out effects and optimizing flip-
flop usage. We use different SAh and SAw in different FPGA
devices with different amounts of resources.

The spike computing engine generates M ×N × S partial
sums every Kh×Kw× Ci

V cycles. Given that Kh×Kw× Ci

V is

Bypass Path

Replicate x4

x2

x1

bias en

x4
x4

x4

x411

1-bit spike case

22

33

44

2-bit spike case

4-bit spike case

8-bit pixel case

11

22

33

44

Flexible Partial Sum
Processing Unit x M

Fig. 6. Flexible partial sum processing unit dealing with four spike or non-
spike cases.

larger than N in most scenarios, we aggregate the partial sums
N in a group, align the partial sums from M

4 PE columns and
use a cross clock region FIFO to transfer the M × N × S
partial sums back to slow clock region, shown in Fig.4.

B. Flexible Partial Sum Processing Unit

The key aspect of the flexible partial sum processing unit is
that it performs partial sums aggregation for the multiple spike
or non-spike input scenarios. Multi-bit spikes are decomposed
into equivalent time steps using the same spike computing
engine to compute the decomposed partial sums. The flexible
partial processing unit shown in Fig.6 reconstructs the partial
sums by shift-add logic. The processing unit consists of M
identical sub-modules to processing M channels of partial
sums. As stated in the previous subsection, S is set to an
empirical value of 4, so each sub-module receives partial sums,
namely P0, P1, P2, P3, of 4 equivalent time steps, shown in
Fig.6. The processing unit can handle 4 cases:

1) In cases where the input spike is binary, four partial sums
are bypassed and directly sent to the next stage.

2) When dealing with a 2-bit input spike, two adjacent par-
tial sums are shifted-merged, yielding Q0 = P0 + (P1 << 1)
and Q1 = P2 + (P3 << 1). The processing unit waits for
another round of the shift-merge process to collect 4 partial
sums and send them to the next stage.

3) When dealing with a 4-bit input spike, all four partial
sums are shifted-merged, yielding R0 = Q0 + (Q1 << 2).
The processing unit must wait for three additional rounds
of the shift-merge process to gather four partial sums before
transmitting them to the next stage.

4) When dealing with direct input coding where the input
pixel is 8-bit, eight partial sums are shifted-merged, yielding
R1 = R0 + (R

′

0 << 4), in which R
′

0 is the previous round
of R0 temporarily stored in registers. In direct encoding, the
convolution results of the static images are replicated T times
and sent to the neurodynamics unit. Therefore, we directly
replicate R1 for four times and send them to the next stage.

After the partial sums are shifted-merged, the bias is added,
and the partial sums can be optionally left-shifted by 1 if the
input spikes from the preceding layer are right-shifted by 1.
The input precision of the partial sums is 12-bit. After being
shifted and merged by the processing unit, the output precision
of the partial sums is extended to 18-bit.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

9

Spike Candidates
Calculation

Next

Next

 Spike In
Previous T

Vmem In
Previous T

Postfix Sums
Calculation

Two-Phase
Neurodynamics
Unit x M

Fig. 7. Neurodynamics unit. The blue-shaded logic performs independent
calculations of spike candidates for each time step. The orange-shaded logic,
on the other hand, handles the calculation of postfix sums for each time
step. The purple multiplexer selects the spike candidates and postfix sums,
generating both the output spikes and the residual membrane potential.

C. Two-Phase Neurodynamics Unit

The key insight of designing the neurodynamic unit is to
support parallel spike generation given the synaptic currents
already available at each time step. After the partial sums
are flexibly merged(or just bypassed in the 1-bit spike case),
the partial sums flow into the neurodynamics unit. In extreme
cases, partial sums flowing into the neurodynamics unit are
consecutively valid, the neurodynamics unit needs to process
partial sums, generate spikes for all S time steps and calculate
the membrane potential for the next batch of time steps in
just a single clock cycle. The naive implementation of the
neurodynamics unit is similar to the idea of the ripple carry
adder, where each bit’s sum depends on the carry generated
by the previous bit, causing a serial carry propagation through
the circuit. In the spike generation process, each spike and
membrane potential depends on the previous spike and mem-
brane potential, causing a series of data propagation through
the circuit. It is impossible to achieve timing closure at 250-
300MHz with such high logic levels.

To address this problem, we design a two-phase neurody-
namics unit to tackle this problem. We take inspiration from
the carry look-ahead adder, where the carry signals are pre-
computed for each bit, enabling parallel carry calculation and
faster addition. We decompose the spike generation process in
two phases. Fig.7 shows the integrate-and-fire neurodynamics
generation process. In phase 1, we precompute the postfix
sums of the partial sums of S time steps and compare them to
the threshold, yielding the spike candidates of each time step.
In this phase, calculations are pipelined since they have no
data dependency on previous time steps. In phase 2, we select
the spikes from these precomputed candidates based on spikes
selected in previous time steps, as shown by blue arrows in

Fig.7. In this phase, timing closure can be satisfied since the
accumulation of logic levels is only determined by the number
of cascaded multiplexers and comparators.

The neurodynamics unit is statically reconfigurable to sup-
port integrate-and-fire [11], leaky-integrate-and-fire [12] and
residual membrane potential [13] neurons since most SNN
models adopt a single neuron type across all layers. Designs
of the neurodynamics unit of different neuron types share the
same methodology.

D. Residual Connection Unit

The key aspect of the residual connection unit is that it
needs to support both IAND and ADD spike-element-wise add
function. The residual connection unit receives spikes of the
current backbone from the flow-to-stream unit and receives
spikes of the shortcut branch from the data loader. The residual
connection unit performs IAND or ADD spike-element-wise
function to the two spike streams.

To align with the 8-bit byte standard, the bit-width values of
spikes from the shortcut branch are restricted to one, two, or
four. The bit-width of spikes from the current backbone is one
in most cases unless the optional average pooling datapath is
selected. In that case, the bit-width increases to two. FireFly
v2 does not support residual connection after the backbone
is downsampled by average pooling since such situations are
not typical in most SNN models. Therefore, when performing
residual connections, the bit-width of spikes from the current
backbone is always one.

The residual connection unit contains dedicated logic of the
IAND function for binary shortcut spikes and low-bit spike-
element-wise ADD function for different shortcut spikes’ bit-
width. The IAND function always produces binary spikes,
which is the most hardware-friendly spike-element-wise func-
tion. When performing the spike-element-wise ADD function,
if the added results exceed the representation range of a two-bit
integer, we can extend the added results to four bits or adopt
the saturate-or-shift method to constrain the results back to
two bits. If the added results exceed the representation range
of a four-bit integer, we will directly saturate the results to
four bits.

VI. IMPLEMENTATION AND EXPERIMENTS

A. Experiments Setup

Similar to its previous version, FireFly v2 targets FPGA
edge devices to cut down the budget in real-world applications.
FireFly v2 is mapped onto Ultra96v2, KV260 and ZCU104
evaluation boards with different (M,V,N, S) configurations.
In Table VII, we present the total resources of the device em-
ployed. FireFly v2, when mapped onto these devices, utilizes
a minimum of over fifty percent of the available resources.

FireFly v2 is designed using SpinalHDL. The Verilog codes
generated by the SpinalHDL compiler are synthesized and
implemented in the Xilinx Vivado 2022.2. Power consump-
tion estimates are provided by the reports of the Vivado
Design Suite. FireFly v2 is based on the Brain-Inspired
Cognitive Engine (BrainCog) [23] and is another step toward
the software–hardware codesigns for the BrainCog project

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

10

TABLE IV
THEORETICAL AND ACTUAL INFERENCE LATENCY FOR TYPICAL

SPIKING CONVOLUTION CASES (16× 16× 8× 4 CORE@250MHZ,
LATENCY MEASURED IN US)

Ci, Co Size Kh,w, Stride, Pad T,B Theory Actual
32, 64 64, 64 3, 1, 1 4, 1 147.5 151.8
32, 64 64, 64 3, 1, 1 4, 2 294.9 302.5
32, 64 64, 64 7, 2, 3 4, 1 200.7 210.8
16, 32 128,128 3, 1, 1 8, 1 294.9 305.3

(http://www.brain-cog.network/) [24]. All the evaluated SNN
models are trained using the BrainCog’s infrastructures.

VII. ANALYTICAL MODEL

The theoretical clock cycles required for a spiking convo-
lutional layer can be represented by Equ.1. Throughout CC
clock cycles, CiHiWiTB input bits are retrieved from external
memory. The average bandwidth required (Bits per Cycle) for
input data can be depicted by Equ.2. Over CC clock cycles,
CoKhKwCi 8-bit synaptic weights are utilized. The average
bandwidth required (Bits per Cycle) for synaptic weights is
described by Equ.3.

CC =

⌈
Co

M

⌉
Ho

⌈
Wo

N

⌉
KhKw

⌈
Ci

V

⌉⌈
TB

S

⌉
(1)

BWinput =
HiWiNV S

HoWoKhKw
(2)

BWweight = 8× HoWoTB

MVNS
(3)

Considering a standard setup of 16×16×8×4 parallelism
and a 16 × 16 binary spiking feature map with 4 time steps,
the average bandwidth needed for synaptic weights is 64 bits
per cycle. For a convolution configuration of a 3 × 3 kernel
with unit stride and same padding, the required bandwidth for
input data is 57 bits per cycle.

The typical bandwidth requirements for input spikes and
synaptic weights are generally met in most scenarios. We’ve
performed multiple experiments using various spiking convo-
lution configurations to compare the actual latency against the
theoretical latency. These experiment findings are detailed in
Table.IV. Remarkably, our streaming processing ensures that
the actual latency closely aligns with the theoretical latency.

A. Comparison with the Previous Version of FireFly

Table.V shows the comparison between FireFly v2 and its
previous version FireFly in hardware specifications. In terms
of LUT consumption, FireFly v2 mapped on Ultra96 consumes
slightly more LUTs than FireFly. This difference arises from
the increased complexity of the overall architecture in FireFly
v2. However, FireFly v2 mapped on ZCU104 is roughly
the same as FireFly since the proportion of the resource
consumption taken up by the computing array becomes more
significant as parallelism increases and FireFly v2 adopts a
DSP-only and fabric-free spike computing engine.

In terms of DSP48E2 consumption, FireFly’s DSP48E2
consumption aligns with multiples of 9 since FireFly seeks

parallelism in kernel dimension by flattening the 3 × 3
kernel window computation, while FireFly v2’s DSP48E2
consumption aligns with multiples of 8 with each dimension in
FireFly v2’s parallelism being the power of two. Consequently,
FireFly v2’s DSP48E2 consumption is equivalent to 8

9 of
FireFly’s consumption on the same device. In terms of the
DSP efficiency, power efficiency and throughput performance,
FireFly v2 mapped on Ultra96 achieves the highest clock
frequency of 600MHz and the highest peak DSP efficiency of
9.6 GOP/s/DSP, which is doubled compared to FireFly. The
DSP efficiency improvement of FireFly v2 compared to its
previous version is primarily attributed to the increased clock
frequency. FireFly v2 mapped on KV260 achieves the highest
peak power efficiency of 835.9 GOP/s/W, maintaining a low
power draw of 4.9W. FireFly v2 mapped on ZCU104 achieves
the highest peak throughput of 8192 GOP/s.

FireFly v2 mapped on Ultra96 can reach 600MHz with
PerformaceWithRemap implementation strategy set in Vivado
Design Suite. However, this strategy induces higher power
consumption. But still, FireFly v2 can achieve similar power
efficiency compared to FireFly on the same Ultra96 device.

FireFly v2 mapped on KV260 cannot reach 600MHz even
with PerformaceWithRemap strategy being enabled. This limi-
tation arises from the considerably inherent smaller CLB:DSP
ratio of 93

1 in KV260 in comparison to Ultra96 with CLB:DSP
ratio of 196

1 . This translates to a higher likelihood of routing
congestion that will cause degrade in frequency performance.
Nevertheless, FireFly v2 mapped on KV260 can reach timing
closure at 500MHz and achieve excellent power efficiency
when using PowerDefaultOpt implementation strategy. Since
power consumption is tightly coupled to the clock frequency,
we also run multiple experiments at lower frequencies using
the same implementation strategy and find that FireFly v2
running at 500MHz achieves the best power efficiency, shown
in Table.VIII. We also try a higher level of parallelism in
KV260 since a 16 × 16 × 8 × 4 configuration only utilizes
40% of DSP48E2s. A 32× 16× 8× 4 configuration can meet
timing closure at 400MHz. Note that in this configuration we
halve the depth of the local weight cache depth and the FIFO
size of the AXI DataMover, reducing the BRAM consumption
to relieve the tight setup requirements.

FireFly v2 mapped on ZCU104 adopts a greater degree of
parallelism to fully utilize the on-chip resources since ZCU104
is the largest FPGA device among the mentioned devices.
FireFly v2 achieves ×2 peak power efficiency and ×1.67 peak
throughput than FireFly on the same ZCU104 device.

We then compare FireFly v2 with our previous work on the
same four SNN models, as initially reported in FireFly and
displayed in Table.VI. FireFly v2 mapped on xczu5ev shows
×1.54,×1.53, ×1.27 and ×1.76 FPS/W improvements on the
MNIST, CIFAR10, CIFAR100 and DVS-Gesture classification
tasks respectively. While FireFly v2 mapped on xczu3eg may
not excel in terms of the FPS/W metric due to the power
inefficiencies brought by the complex routings operating under
600MHz, it still exhibits a substantial improvement in infer-
ence latency and actual GOP/s performance on the same device
compared with FireFly. It’s worth noting that the inference
latency of FireFly does not include the direct coding layer, as

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

11

TABLE V
COMPARISON IN HARDWARE SPECIFICATIONS BETWEEN FIREFLY AND FIREFLY V2

Device LUTs(K) DSPs B/URAM BUFGs Freq. Power Array Size PeakGOP/s GOP/s/DSP GOP/s/W

FireFly xczu3eg 15 288 216/0 1(196) 300 3.11 144× 16 1382.4 4.8 445.94
xczu5ev 42 1152 25/50 1(544) 300 18.2 288× 32 5529.6 4.8 303.82

FireFly v2
xczu3eg 23 256 103/0 3(196) 300/600 6.2 16× 16× 4× 4 2457.6 9.6 396.39
xczu5ev 26 512 87/8 3(352) 250/500 4.9 16× 16× 8× 4 4096 8 835.92
xczu7ev 41 1024 160/8 3(544) 250/500 13.5 32× 16× 8× 4 8192 8 606.81

1 The reported power consumption in FireFly [10] is 2.55W, excluding the power consumption of the PS-side CPUs. To ensure a fair comparison, we use the
total power consumption metric of the whole Zynq Ultrascale SoC in this table.

TABLE VI
COMPARISON WITH FIREFLY ON MULTIPLE SNN MODELS

Benchmark FireFly(xczu3eg@300MHz) FireFly v2(xczu3eg@600MHz) FireFly v2(xczu5ev@500MHz)
Net Dataset FLOP T Acc. us W FPS/W GOP/s us W FPS/W GOP/s us W FPS/W GOP/s

SNN5 MNIST 130M 4 98.2 4911 3.1 656.9 1063.3 326 6.2 494.7 1601.6 201 4.9 1015.3 2597.6
SNN7 CIFAR10 284M 4 91.4 10351 3.1 311.6 1098.2 706 6.2 228.4 1609.9 427 4.9 477.9 2661.9

SNN11 CIFAR100 586M 4 64.3 21281 3.1 151.5 1101.7 1749 6.2 92.2 1340.5 1057 4.9 193.1 2218.1
SNN9 DVS-G 978M 4 89.3 35461 3.1 90.9 1103.7 1989 6.2 81.1 1967.6 1281 4.9 159.3 3055.2

1,2,3,4 The reported inference latency in FireFly [10] do not include the direct coding layer, resulting the higher FPS/W and GOP/s metrics.

TABLE VII
TOTAL RESOURCES OF DIFFERENT DEVICES

Board Chip LUTs FFs DSPs BRAM URAM
Ultra96 xczu3eg 70K 140K 360 216 0
KV260 xczu5ev 117K 234K 1248 133 64

ZCU104 xczu7ev 230K 460K 1728 312 96

TABLE VIII
POWER CONSUMPTION VERSUS FREQUENCY (XCZU5EV)

Frequency(MHz) 300 350 400 450 500
Power(W) 4.04 4.28 4.54 4.73 4.93

FireFly does not support non-spike convolution. In contrast,
the inference latency of FireFly v2 presented in Table VI is
measured end-to-end. The actual improvements of FireFly v2
in these metrics should be even higher.

One might also notice that the actual performance im-
provement is not directly proportional to the peak perfor-
mance improvement shown in Table.V. This discrepancy is
primarily due to FireFly v2 adopting a coarser parallelism
granularity, which can be fully leveraged when processing
input feature maps from larger datasets, such as ImageNet.
In FireFly, we specifically selected these four models with
3 × 3 convolutional layers and max-pooling layers only, as
FireFly is particularly well-suited for optimizing these types
of layers. FireFly adopts a fixed convolution configuration and
a fully flattened parallelism scheme in the kernel dimension.
The spike pixels in the same feature map are processed
sequentially in an on-the-fly manner. This allows FireFly to
handle small feature maps more effectively. FireFly v2, on the
other hand, supports general torch.nn.Conv2d operations
but operates with a coarser granularity at the pixel level, as
it supports pixel-level parallelism and can process N spike
pixels at a time. As a result, we may not fully leverage its
advantages when handling small feature maps on FireFly v2,
especially when N ≥ Wo. Taking the CIFAR-10 or CIFAR-
100 dataset as an example, the size of the feature map is

initially only 32 × 32. After three 2 × 2 pooling operations,
the size becomes 4 × 4. When dealing with feature maps
with a width or height smaller than 4, several inefficiencies
become apparent: 1) The explicit same-padding processing
time becomes noticeable, as only 4×4

6×6 = 16
36 spike pixels are

valid. 2) When N > 4, the redundant processing elements
allocated for pixel parallelism remain idle. 3) Dealing with
small feature maps reduces the opportunities for reusing kernel
weights within the same set of feature maps, making parameter
bandwidth a bottleneck. These inefficiencies won’t occur when
dealing with large datasets such as ImageNet. Despite the
listing inefficiencies, FireFly v2 still achieves improvements
in latency and efficiency on the same benchmarks compared
with our previous work.

B. Comparison with the DeepFire2

In FireFly, we’ve evaluated various systolic-array-based
SNN accelerators. We won’t repeat these comparisons, as
FireFly has already shown superior performance compared
to those prior studies [25] [26] [27] [28] [29] [14] [7] [30]
[31]. In this paper, we compare FireFly v2 with DeepFire [19]
and DeepFire2 [20], two recently published high-performance
SNN accelerators also with DSP optimizations and operating
at 450-600MHz high clock frequency. DeepFire series targets
large multi-die FPGA devices and adopts layer-wise mapping
of the entire SNN models. DeepFire2 achieves the highest
clock frequency of 600MHz and throughput among all FPGA-
based SNN implementations with deep pipelining.

It is important to figure out the experimental setup of
DeepFire2 to ensure fair comparison. Despite adopting distinct
SNN model mapping schemes (Folded for FireFly, Unrolled
for DeepFire), both series of accelerators utilize the same
GOP/s metrics. The FLOPS count for the SNN models is
determined by calculating the FLOPS count of their equiv-
alent ANN models using established tools like ptflops.
This same experimental setup enables a fair and meaningful
comparison. However, DeepFire2 did not provide information

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

12

TABLE IX
COMPARISON WITH DEEPFIRE2 ON MULTIPLE SNN MODELS

Network Dataset FLOPs T Acc. us DSP W MHz GOP/s DSP Eff.1 DSP Eff.2 GOP/s/W

FireFly v2
(xczu5ev)

CIFAR-Net3 CIFAR10 2.58 4 93.6 2997 512 4.9 500 3443 8 6.73 702.74
CIFAR-Net4 CIFAR100 4.08 4 74.7 4502 512 4.9 500 3625 8 7.08 739.81

SEW-ResNet345 ImageNet 7.34 8 67.3 30613 512 4.9 500 1918 8 3.75 391.46
SEW-ResNet346 ImageNet 7.34 8 62.4 20276 512 4.9 500 2896 8 5.66 591.03
SEW-ResNet347 ImageNet 9.58 8 62.4 24696 512 4.9 500 3103 8 6.06 633.33

DeepFire2
(xcvu9p)

VGG10-S CIFAR10 0.45 1 87.10 43 2050 20.1 550 10400 8.8 5.10 517.93
VGG10-L CIFAR100 1.34 1 65.90 82 2881 29.8 500 15500 8 5.67 519.79
VGG13-L ImageNet 15.76 1 40.10 641 5400 47.2 450 21100 7.2 4.55 447.00

1,2 The first DSP Eff. represents the theoretical peak GOP/s/DSP metric, while the second represents the actual average GOP/s/DSP metric.
3 3x32x32-32c3-256c3-256c3-mp2-256c3-256c3-256c3-mp2-512c3-mp2-1024c3-ap-10
4 3x32x32-64c3-256c3-256c3-mp2-256c3-512c3-512c3-mp2-512c3-mp2-1024c3-ap-10
5,6 The spike element-wise function of the first SEW-ResNet34 is ADD, while the second is IAND.
7 The spike element-wise function is IAND. The input image is resized to 3× 256× 256 to align with the computation granularity of FireFly v2.

about their time step configuration in their experiments, a
critical parameter that significantly impacts inference latency.
Furthermore, it’s important to note that DeepFire2 does not
support any form of time step aggregation or sparsity ac-
celeration. Consequently, inference performance relies solely
on the following factors: the total FLOPs of the model,
simulation time step, clock frequency, and DSP usage, with the
simulation time step being the only unknown variable. Based
on the metrics reported in their research, it can be inferred
that DeepFire2 adopts a simulation time step of one, which
explains the exceptionally low reported inference latency. As
the computation workload scales linearly with the time step,
we quantify the computation workload as the product of
FLOPs and the time step (FLOPs·T).

Moreover, in DeepFire series accelerators, SNN models
for CIFAR-10, CIFAR-100, and ImageNet classification are
meticulously crafted to ensure that the network parameters
align seamlessly with the storage granularity of BRAM and
URAM. Although the performance of FireFly v2 does not
strongly correlate with specific SNN models, we choose SNN
models that align with the parallelism granularity of FireFly
v2’s architecture to ensure a fair comparison.

We have the following several key observations in Table.IX.
1) Both FireFly v2 and DeepFire2 achieve significantly high

clock frequencies, exceeding 400MHz. FireFly v2 exhibits
stable frequency performance as a standalone engine, while
DeepFire2 experiences a sharp frequency drop, dropping to
450MHz when deploying deep SNN models on large datasets.

2) DeepFire2 prioritizes inference latency over benchmark
accuracy by adopting a T = 1 SNN setup. In contrast, FireFly
v2 targets SNN models capable of delivering high classifi-
cation accuracy, particularly on more complex datasets such
as CIFAR100 and ImageNet. The accuracy of 93.6%, 74.7%,
and 67.3% achieved on CIFAR10, CIFAR100, and ImageNet
are closely aligned with the state-of-the-art performance in
SNN algorithms. The remaining performance gap is primarily
attributed to the quantization process, which could potentially
be mitigated through the adoption of a quantization-aware
training approach in the future.

3) FireFly v2 falls short in achieving the same level of
GOP/s performance and inference latency as DeepFire2, since
xcvu9p, the FPGA used by DeepFire2, is considerably larger

than the edge devices we use. However, it’s noteworthy
that FireFly v2 has ×1.32,×1.25,×1.33 average GOP/s/DSP
efficiency improvements, and ×1.35,×1.42,×1.42 power effi-
ciency improvements on CIFAR10, CIFAR100 and ImageNet
classification tasks compared to DeepFire2.

4) The SNN models benchmarked by FireFly v2 compared
to DeepFire2 are not only larger in terms of FLOPs (2.58 vs.
0.45 on the CIFAR10 task and 4.08 vs. 1.34 on the CIFAR100
task) but also more complex(ResNet compared to VGGNet on
the ImageNet task).

5) DeepFire2 relies on costly, large FPGA devices that may
not be practical for deployment in embedded systems in edge
scenarios. On the other hand, the KV260 device we employ
is a commercially available and affordable FPGA device.
It ensures that the budget for constructing customized edge
systems for real-world applications remains manageable.

It is worth noting that FireFly v2 will exhibit a higher
performance when the convolutional configuration aligns with
its computation granularity. For instance, in the case of SEW-
ResNet34 with a 224× 224 image input, the resulting feature
map widths of 14 and 7 do not align with the ×8 pixel
parallelism granularity of FireFly v2. However, when SEW-
ResNet34 uses a 256 × 256 image input, there is a notable
improvement in efficiency, as the feature map size aligns with
the ×8 granularity. It’s also worth mentioning that relying on
FLOP calculations of equivalent ANN models may not offer a
fair measure of model capacity when running SNN models
with multi-bit spikes. This is because the FLOP count of
equivalent ANN models does not account for the bit-width of
operands, resulting in an efficiency drop when benchmarking
the SEW-ResNet34 network with the ADD function.

FireFly v2 and DeepFire2 both utilize similar DSP opti-
mization techniques and operate at similar clock frequencies,
resulting in comparable normalized inference efficiency. Fire-
Fly v2’s higher efficiency compared to DeepFire2 is primarily
attributed to its systolic array consistently operating without
idle states. However, the remarkably low inference latency of
DeepFire2 is primarily achieved through its use of single-time-
step inference and extensive utilization of DSP48E2 resources.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

13

C. Scalability

1) Scalability in Parallelism Configurations: Being a
highly parameterized design, FireFly v2 demonstrates scalabil-
ity in parallelism configurations across three FPGA devices of
varying sizes. The four distinct parallelism domains facilitate a
broad spectrum of configuration options. Larger FPGA devices
can support higher levels of parallelism.

2) Scalability in Supported Model Size: FireFly v2 repre-
sents a classic single computing core design wherein workload
computation is temporarily folded. The SNN model size trans-
lates to inference time without a physical limitation, thereby
exhibiting excellent model size scalability.

3) Scalability in Supported Algorithm: While our experi-
ments focus on VGG-like and SEW-ResNet algorithms, the
bit-serial decomposition approach adopted by FireFly v2
serves as a versatile solution. This approach can be scaled
to accommodate a broad spectrum of multi-bit spikes SNNs.

D. Discussion

In our experiments, our primary focus is on comparing
FireFly v2 accelerators with DeepFire2 since both of its
previous versions have already outperformed most SNN FPGA
accelerators in terms of latency and efficiency.

The excellent performance of our previous work FireFly
is mainly attributed to utilizing the DSP48E2s to build a
large synaptic crossbar circuit. The improvements shown in
FireFly v2 are attributed to the optimized spatiotemporal
dataflow and the doubled clock frequency. However, we
believe improving the performance of inference efficiency
based on FPGA devices without sparsity acceleration becomes
more and more challenging. The clock frequency of FireFly
v2 and DeepFire2 is already close to the maximum supported
frequency by Ultrascale+ FPGAs.

Another significant aspect of FireFly v2 is its advance-
ment toward a general SNN-DPU solution, akin to Vitis-AI
DPU—the ANN-DPU counterpart. The support for non-spike
operations in FireFly v2 is crucial for end-to-end deployment
without requiring algorithm modifications. This represents a
milestone where SNN algorithmic research, such as DIET-
SNN [5] and SEW-ResNet [6], can be directly deployed onto
FireFly v2 with minimal impact on accuracy. It is worth noting
that SNN algorithmic research is still rapidly evolving in terms
of encoding schemes [32], neuron types [13] and connection
topologies [6]. While the development cycle for hardware used
to be significantly longer than that for algorithm software, the
current trend in FPGA-based agile hardware development can
now expedite the process and provide timely support for the
latest algorithmic advancements.

VIII. CONCLUSIONS

FireFly v2 exhibits significant improvements over our initial
version of FireFly. It takes a significant step forward in advanc-
ing hardware support for current SNN algorithm developments
by supporting non-spike operation, which presents an obstacle
in the end-to-end deployment onto existing specialized SNN
hardware. The spatiotemporal dataflow enables the processing

of incoming spikes and the generation of output spikes on-
the-fly. Additionally, the double data rate technique enables
the DSP48E2 systolic array to operate at a clock frequency of
500-600MHz, which is twice as fast as our previous version
of FireFly. In this work, our focus remains on targeting
commercially available and affordable embedded FPGA edge
devices for use in edge scenarios. In the future, we will
continue to develop SNN hardware infrastructures that can
not only operate at higher speeds but also offer timely sup-
port for advancements in SNN algorithms, enabling higher-
performance SNN software and hardware co-design.

REFERENCES

[1] Wolfgang Maass, “Networks of spiking neurons: the third generation of
neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671,
1997.

[2] Guobin Shen, Dongcheng Zhao, and Yi Zeng, “Backpropagation with
biologically plausible spatiotemporal adjustment for training deep spik-
ing neural networks,” Patterns, vol. 3, no. 6, p. 100522, 2022.

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain et al., “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99,
2018.

[4] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco
Galluppi, Cameron Patterson, David R Lester, Andrew D Brown,
and Steve B Furber, “Spinnaker: A 1-w 18-core system-on-chip for
massively-parallel neural network simulation,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013.

[5] Nitin Rathi and Kaushik Roy, “Diet-snn: A low-latency spiking neural
network with direct input encoding and leakage and threshold optimiza-
tion,” IEEE Transactions on Neural Networks and Learning Systems,
2021.

[6] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier,
and Yonghong Tian, “Deep residual learning in spiking neural net-
works,” Advances in Neural Information Processing Systems, vol. 34,
pp. 21 056–21 069, 2021.

[7] Qinyu Chen, Chang Gao, and Yuxiang Fu, “Cerebron: A reconfigurable
architecture for spatiotemporal sparse spiking neural networks,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30,
no. 10, pp. 1425–1437, 2022.

[8] Jeong-Jun Lee and Peng Li, “Reconfigurable dataflow optimization
for spatiotemporal spiking neural computation on systolic array accel-
erators,” in Proceedings of the 38th International Conference on on
Computer Design (ICCD). IEEE, 2020, pp. 57–64.

[9] Shu-Quan Wang, Lei Wang, Yu Deng, Zhi-Jie Yang, Sha-Sha Guo, Zi-
Yang Kang, Yu-Feng Guo, and Wei-Xia Xu, “Sies: A novel implemen-
tation of spiking convolutional neural network inference engine on field-
programmable gate array,” Journal of Computer Science and Technology,
vol. 35, pp. 475–489, 2020.

[10] Jindong Li, Guobin Shen, Dongcheng Zhao, Qian Zhang, and Yi Zeng,
“Firefly: A high-throughput hardware accelerator for spiking neural net-
works with efficient dsp and memory optimization,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2023.

[11] Larry F Abbott, “Lapicque’s introduction of the integrate-and-fire model
neuron (1907),” Brain Research Bulletin, vol. 50, no. 5-6, pp. 303–304,
1999.

[12] Peter Dayan, Laurence F Abbott et al., “Theoretical neuroscience:
computational and mathematical modeling of neural systems,” Journal
of Cognitive Neuroscience, vol. 15, no. 1, pp. 154–155, 2003.

[13] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy, “Rmp-
snn: Residual membrane potential neuron for enabling deeper high-
accuracy and low-latency spiking neural network,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 13 558–13 567.

[14] Wujian Ye, Yuehai Chen, and Yijun Liu, “The implementation and
optimization of neuromorphic hardware for supporting spiking neu-
ral networks with mlp and cnn topologies,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[15] Jian Zhang, Ran Wang, Tengbo Wang, Jia Liu, Shibo Dang, and Guohe
Zhang, “A configurable spiking convolution architecture supporting
multiple coding schemes on fpga,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 69, no. 12, pp. 5089–5093, 2022.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

14

[16] Surya Narayanan, Karl Taht, Rajeev Balasubramonian, Edouard Gia-
comin, and Pierre-Emmanuel Gaillardon, “Spinalflow: An architecture
and dataflow tailored for spiking neural networks,” in Proceedings of
the 47th ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 349–362.

[17] Fangxin Liu, Wenbo Zhao, Zongwu Wang, Yongbiao Chen, Tao Yang,
Zhezhi He, Xiaokang Yang, and Li Jiang, “Sato: spiking neural network
acceleration via temporal-oriented dataflow and architecture,” in Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (DAC),
2022, pp. 1105–1110.

[18] Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and
Ralph Wittig, “Deep learning with int8 optimization on xilinx devices,”
White Paper, 2016.

[19] Myat Thu Linn Aung, Chuping Qu, Liwei Yang, Tao Luo, Rick
Siow Mong Goh, and Weng-Fai Wong, “Deepfire: Acceleration of
convolutional spiking neural network on modern field programmable
gate arrays,” in Proceedings of the 31st International Conference on
Field-Programmable Logic and Applications (FPL). IEEE, 2021, pp.
28–32.

[20] Myat Thu Linn Aung, Daniel Gerlinghoff, Chuping Qu, Liwei Yang,
Tian Huang, Rick Siow Mong Goh, Tao Luo, and Weng-Fai Wong,
“Deepfire2: A convolutional spiking neural network accelerator on
fpgas,” IEEE Transactions on Computers, no. 99, pp. 1–11, 2023.

[21] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Joon Kyung Kim, Vikas Chandra, and Hadi Esmaeilzadeh, “Bit
fusion: Bit-level dynamically composable architecture for accelerating
deep neural network,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 764–
775.

[22] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong, “Optimizing fpga-based accelerator design for deep con-
volutional neural networks,” in Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, 2015, pp.
161–170.

[23] Yi Zeng, Dongcheng Zhao, Feifei Zhao, Guobin Shen, Yiting
Dong, Enmeng Lu, Qian Zhang, Yinqian Sun, Qian Liang, Yuxuan
Zhao, Zhuoya Zhao, Hongjian Fang, Yuwei Wang, Yang Li,
Xin Liu, Chengcheng Du, Qingqun Kong, Zizhe Ruan, and
Weida Bi, “BrainCog: A spiking neural network based, brain-
inspired cognitive intelligence engine for brain-inspired AI and brain
simulation,” Patterns, p. 100789, Jul. 2023. [Online]. Available:
https://doi.org/10.1016/j.patter.2023.100789

[24] “Braincog: Brain-inspired cognitive intelligence engine.” [Online].
Available: http://www.brain-cog.network

[25] Daniel Neil and Shih-Chii Liu, “Minitaur, an event-driven fpga-based
spiking network accelerator,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 12, pp. 2621–2628, 2014.

[26] Jianhui Han, Zhaolin Li, Weimin Zheng, and Youhui Zhang, “Hardware
implementation of spiking neural networks on fpga,” Tsinghua Science
and Technology, vol. 25, no. 4, pp. 479–486, 2020.

[27] Jilin Zhang, Hui Wu, Jinsong Wei, Shaojun Wei, and Hong Chen,
“An asynchronous reconfigurable snn accelerator with event-driven time
step update,” in Proceedings of the IEEE Asian Solid-State Circuits
Conference (A-SSCC). IEEE, 2019, pp. 213–216.

[28] Xiping Ju, Biao Fang, Rui Yan, Xiaoliang Xu, and Huajin Tang, “An
fpga implementation of deep spiking neural networks for low-power and
fast classification,” Neural Computation, vol. 32, no. 1, pp. 182–204,
2020.

[29] Haowen Fang, Zaidao Mei, Amar Shrestha, Ziyi Zhao, Yilan Li, and
Qinru Qiu, “Encoding, model, and architecture: Systematic optimization
for spiking neural network in fpgas,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[30] Daniel Gerlinghoff, Zhehui Wang, Xiaozhe Gu, Rick Siow Mong
Goh, and Tao Luo, “E3ne: An end-to-end framework for accelerating
spiking neural networks with emerging neural encoding on fpgas,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
3207–3219, 2021.

[31] Sathish Panchapakesan, Zhenman Fang, and Jian Li, “Syncnn: Evalu-
ating and accelerating spiking neural networks on fpgas,” ACM Trans-
actions on Reconfigurable Technology and Systems, vol. 15, no. 4, pp.
1–27, 2022.

[32] Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng,
and Guoqi Li, “Gated attention coding for training high-performance
and efficient spiking neural networks,” arXiv preprint arXiv:2308.06582,
2023.

Jindong Li received his bachelor degree from
Sun Yat-sen University in Guangzhou, Guangdong,
China in 2022. He is now a master student in
the Brain-inspired Cognitive Intelligence Lab, at
the Institute of Automation, Chinese Academy of
Sciences, under the supervision of Prof. Qian Zhang
and Prof. Yi Zeng. His research focuses on hardware
acceleration of brain-inspired algorithms, domain-
specific architecture and FPGA system design.

Guobin Shen received his bachelor degree from
Sun Yat-sen University in Guangzhou, Guangdong,
China in 2021. He is now a PhD candidate in
the Brain-inspired Cognitive Intelligence Lab, at
the Institute of Automation, Chinese Academy of
Sciences, under the supervision of Prof. Yi Zeng. His
research focuses on biologically-inspired learning
algorithms and spiking neural network architecture
design and training strategies.

Dongcheng Zhao received the bachelor degree
from XiDian University, Xi’an, Shaanxi, China, in
2016 and Ph.D degree from University of Chinese
Academy of Sciences, Beijing, China, in 2021. He is
currently an assistant professor in the Brain-inspired
Cognitive Intelligence Lab, Institute of Automation,
Chinese Academy of Sciences, China. His current
research interests include learning algorithms in
spiking neural networks, thalamus-cortex interac-
tion, visual object tracking, etc.

Qian Zhang obtained her bachelor degree in 2009
and Ph.D degree in 2014 from Xidian University,
China. She is currently an associate professor and
director in the Brain-inspired Cognitive Intelligence
Lab, Institute of Automation, Chinese Academy of
Sciences, China. Her research interests include brain
simulation and brain-inspired cognitive computing
modeling, especially working memory modeling and
simulation of brain rhythms at different levels of
consciousness.

Yi Zeng obtained his bachelor degree in 2004 and
Ph.D degree in 2010 from Beijing University of
Technology, China. He is currently a professor and
director in the Brain-inspired Cognitive Intelligence
Lab, Institute of Automation, Chinese Academy of
Sciences, China. He is a principal investigator in the
Center for Excellence in Brain Science and Intel-
ligence Technology, Chinese Academy of Sciences,
China, and a Professor in the School of Future Tech-
nology, and School of Humanities, University of
Chinese Academy of Sciences, China. His research

interests include brain-inspired artificial intelligence, brain-inspired cognitive
robotics, ethics and governance of Artificial Intelligence, etc.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3380550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 08:45:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1016/j.patter.2023.100789
http://www.brain-cog.network

